COMPUTERS & STRUCTURES, INC.

STRUCTURAL AND EARTHQUAKE ENGINEERING SOFTWARE

SAFE 2016

Design of Slabs, Beams and Foundations Reinforced and Post-Tensioned Concrete

Verification

SAFE[®] DESIGN OF SLABS, BEAMS AND FOUNDATIONIS REINFORCED AND POST-TENSIONED CONCRETE

Verification Manual

ISO SAF112816M6 Rev.0 Proudly developed in the United States of America

.

November 2016

Copyright

Copyright © Computers & Structures, Inc., 1978-2016 All rights reserved.

The CSI Logo® and SAFE® are registered trademarks of Computers & Structures, Inc. Watch & LearnTM is a trademark of Computers & Structures, Inc. Adobe and Acrobat are registered trademarks of Adobe Systems Incorported. AutoCAD is a registered trademark of Autodesk, Inc.

The computer program SAFE® and all associated documentation are proprietary and copyrighted products. Worldwide rights of ownership rest with Computers & Structures, Inc. Unlicensed use of this program or reproduction of documentation in any form, without prior written authorization from Computers & Structures, Inc., is explicitly prohibited.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior explicit written permission of the publisher.

Further information and copies of this documentation may be obtained from: Computers & Structures, Inc. www.csiamerica.com

<u>info@csiamerica.com</u> (for general information) <u>support@csiamerica.com</u> (for technical support)

DISCLAIMER

CONSIDERABLE TIME, EFFORT AND EXPENSE HAVE GONE INTO THE DEVELOPMENT AND TESTING OF THIS SOFTWARE. HOWEVER, THE USER ACCEPTS AND UNDERSTANDS THAT NO WARRANTY IS EXPRESSED OR IMPLIED BY THE DEVELOPERS OR THE DISTRIBUTORS ON THE ACCURACY OR THE RELIABILITY OF THIS PRODUCT.

THIS PRODUCT IS A PRACTICAL AND POWERFUL TOOL FOR STRUCTURAL DESIGN. HOWEVER, THE USER MUST EXPLICITLY UNDERSTAND THE BASIC ASSUMPTIONS OF THE SOFTWARE MODELING, ANALYSIS, AND DESIGN ALGORITHMS AND COMPENSATE FOR THE ASPECTS THAT ARE NOT ADDRESSED.

THE INFORMATION PRODUCED BY THE SOFTWARE MUST BE CHECKED BY A QUALIFIED AND EXPERIENCED ENGINEER. THE ENGINEER MUST INDEPENDENTLY VERIFY THE RESULTS AND TAKE PROFESSIONAL RESPONSIBILITY FOR THE INFORMATION THAT IS USED.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

CONTENTS

Introduction

Methodology

Acceptance Criteria

Summary of Examples

Analysis Examples

1	Simply Supported Rectangular Plate
2	Rectangular Plate with Built-In Edges
3	Rectangular Plate with Mixed Boundary
4	Rectangular Plate on Elastic Beams
5	Infinite Flat Plate on Equidistant Columns
6	Infinite Flat Plate on Elastic Subgrade
7	Skew Plate with Mixed Boundary
8	ACI Handbook Flat Slab Example 1
9	ACI Handbook Two-Way Slab Example 2
10	PCA Flat Plate Test
11	University of Illinois Flat Plate Test F1
12	University of Illinois Flat Slab Tests F2 and F3
13	University of Illinois Two-way Slab Test T1
14	University of Illinois Two-Way Slab Test T2
15	Temperature Loading
16	Cracked Slab Analysis
17	Crack Width Analysis

PROGRAM NAME: REVISION NO.:

Design Examples

ACI 318-14

ACI 318-14 PT-SL 001 ACI 318-14 RC-BM-001 ACI 318-14 RC-PN-001 ACI 318-14 RC-SL-001

ACI 318-11

ACI 318-11 PT-SL 001 ACI 318-11 RC-BM-001 ACI 318-11 RC-PN-001 ACI 318-11 RC-SL-001

ACI 318-08

ACI 318-08 PT-SL 001 ACI 318-08 RC-BM-001 ACI 318-08 RC-PN-001 ACI 318-08 RC-SL-001

AS 3600-09

AS 3600-01 PT-SL-001 AS 3600-01 RC-BM-001 AS 3600-01 RC-PN-001 AS 3600-01 RC-SL-001

AS 3600-01

AS 3600-01 PT-SL-001 AS 3600-01 RC-BM-001 AS 3600-01 RC-PN-001 AS 3600-01 RC-SL-001 Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

PROGRAM NAME: \underline{S}_{0} REVISION NO.: 0

SAFE 0

BS 8110-97

BS 8110-97 PT-SL-001Post-Tensioned Slab DesignBS 8110-97 RC-BM-001Flexural and Shear Beam DesignBS 8110-97 RC-PN-001Slab Punching Shear DesignBS 8110-97 RC-SL-001Slab Flexural Design

CSA A23.3-14

CSA 23.3-14 PT-SL-001 CSA A23.3-14 RC-BM-001 CSA A23.3-14 RC-PN-001 CSA A23.3-14 RC-SL-001

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

CSA A23.3-04

CSA 23.3-04 PT-SL-001 CSA A23.3-04 RC-BM-001 CSA A23.3-04 RC-PN-001 CSA A23.3-04 RC-SL-001 Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Eurocode 2-04

Eurocode 2-04 PT-SL-001 Eurocode 2-04 RC-BM-001 Eurocode 2-04 RC-PN-001 Eurocode 2-04 RC-SL-001 Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Hong Kong CP-13

Hong Kong CP-13 PT-SL-001 Hong Kong CP-13 RC-BM-001 Hong Kong CP-13 RC-PN-001 Hong Kong CP-13 RC-SL-001

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

PROGRAM NAME: REVISION NO.:

Hong Kong CP-04

Hong Kong CP-04 PT-SL-001 Hong Kong CP-04 RC-BM-001 Hong Kong CP-04 RC-PN-001 Hong Kong CP-04 RC-SL-001 Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Italian NTC 2008

IS 456-00 PT-SL-001

IS 456-00 RC-BM-001

IS 456-00 RC-PN-001

IS 456-00 RC-SL-001

IS 456-00

Italian NTC-2008 PT-SL-001
Italian NTC-2008 RC-BM-001
Italian NTC-2008 PN-001
Italian NTC-2008 RC-SL-001

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

NZS 3101-06

NZS 3101-06 PT-SL-001 NZS 3101-06 RC-BM-001 NZS 3101-06 RC-PN-001 NZS 3101-06 RC-SL-001 Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Singapore CP 65-99

Singapore CP 65-99 PT-SL-001 Singapore CP 65-99 RC-BM-001 Singapore CP 65-99 RC-PN-001 Singapore CP 65-99 RC- SL-001

Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

PROGRAM NAME: $\frac{SA}{0}$ REVISION NO.: $\frac{SA}{0}$

SAFE 0

Turkish TS 500-2000

Turkish TS 500-2000 PT-SL-001 Turkish TS 500-2000 RC-BM-001 Turkish TS 500-2000 RC-PN-001 Turkish TS 500-2000 RC- SL-001 Post-Tensioned Slab Design Flexural and Shear Beam Design Slab Punching Shear Design Slab Flexural Design

Conclusions

References

0

PROGRAM NAME: **REVISION NO.:**

	SAFE Software Verification Log					
Revision Number	Date	Description				
0	December 02, 2008	Initial release for SAFE v 12.0.0				
1	February 19, 2009	Initial release for SAFE v12.1.0. Example 15 and Example 16 were added.				
2	December 26, 2009	Revised to reflect results obtained from Version 12.2.0. All examples, including 1 through 16 and all code-specific examples (ACI 318-00, AS 3600-01, BS 8110-97, CSA A23.3-04, Eurocode 2-04, Hong Kong CoP-04, IS 456-00, NZS 3101, and Singapore CP 65-99 – PS-SL, RC-BM, RC-PN, RC-SL)				
3	July 12, 2010	Minor changes have been made to the Examples supplied with the software: (1) The documented results for Analysis Examples 1, 4, 5, 7, and 8 have been updated to correct for truncation error in the reported values. The values actually calculated by the software have not changed for these examples. (2) The input data file for Example 16 has been updated to correct the creep and shrinkage parameters used so that they match those of the benchmark example, and the documented results updated accordingly. The behavior of the software has not changed for this example. (3) All Slab Design examples have been updated to report the slab design forces rather than the strip forces. The design forces account for twisting moment in slab, so their values are more meaningful for design. The behavior of the software has not changed for these examples.				
4	December 8, 2010	Minor changes have been made to the Examples supplied with the software: (1) The documented results for Analysis Examples 1 to 7 have been updated to include the results from thin-plate and thick-plate formulation. (2) The input data files for Australian AS 3600-2009 have been added. (3) The Eurocode 2-2004 design verification examples now include the verification for all available National Annexes.				
	SA	AFE 2014 Software Verification Log				
Revision	Dete	Degeninging				
Number	Date	Description				
0	February 2014	New design examples have been added for the following codes: ACI 318-11, Hong Kong CoP-2013, Italian NTC 2008 and				

0

PROGRAM NAME: **REVISION NO.:**

SAFE Software Verification Log								
Revision								
Number	Date	Description						
		Turkish TS 500-2000 (Incident 63082).						
		Documentation for the punching-shear design examples of the following codes have been corrected for an error in the documented calculation of the punching perimeter: CSA A23.3-04, IS 456-00, and NZS 3101-06. No calculated results have changed. (Incident 46359)						
	Documentation for the beam and slab design examples of the A 3600-09 code have been updated to account for a change made the software under Incident 35218 for version 12.3.2 that upda Equation 8.1.3(2). No calculated results have changed. (Incide 46359)							
	Results for the area of reinforcing steel have changed for Eurocode P/T slab example "Eurocode 2-04 PT-SL-001". (Incident 62486)							
		Documentation for analysis Example 17 has been corrected for an error in the documented cracked width computed by SAFE. No calculated results have changed. (Incident 63153)						
		Initial release for SAFE 2014 v14.1.0.						
1	June 2015	New design examples have been added for the following codes: ACI 318-14 (Incident 79838), and CSA A23.3-14 (Incident 71674).						
	SA	AFE 2016 Software Verification Log						
Revision								
Number	Date	Description						
0	November 2016	For Example 5, stiffening elements were updated in the model. Results have changed slightly.For Examples 8-14, stiffening elements were updated in the column areas, and all beam cross-section properties were updated to reflect values calculated from the actual geometry.						
		For Examples 10-14, the models were changed to reflect the fact that the slab should extend to the outside faces of the columns.						

0

PROGRAM NAME: **REVISION NO.:**

	SAFE Software Verification Log							
Revision								
Number	Date	Description						
		The slight increase in slab area has changed reported results.						
		For design examples ACI 318-08 RC-PN-001, ACI 318-11 RC-PN-001 and ACI 318-14 RC-PN-001, incorrectly sized and redundant stiff areas were removed from the models. Reported results have changed slightly.						
		For design examples CSA A23.3-04 RC-SL-001 and CSA A23.3-14 RC-SL-001, mesh size has been changed to 0.25m to be the same as in the rest of the international code examples. Results have changed slightly.						
		For all changed models, reported results that have changed have been updated in the corresponding documentation.						
		Documentation for Example 5 has been updated for incorrect modeling information regarding the column stiff area dimensions.						
		Documentation for Example 14 has been updated for incomplete modeling information in the images.						
		Documentation for Eurocode 2-04 RC-PN-001was updated to reflect changes in how the program is determining K2*Med2 and K3*Med3, which has changed the results.						
		Documentation for all design examples of type RC-SL has had wording updated to reflect the current state of the models.						
0	November 2016	Minor typo error for units for modulus of elasticity of concrete (Ec) and modulus of elasticity of steel (Es) and poison ratio value have been updated.						

PROGRAM NAME:	SAFE
REVISION NO.:	0

INTRODUCTION

SAFE is a software application, based on the finite element method, for the engineering analysis, design and detailing of reinforced-concrete and post-tensioned slabs, beams and foundations.

This document provides example problems used to test various features and capabilities of the SAFE program. Users should supplement these examples as necessary for verifying their particular application of the software.

METHODOLOGY

A comprehensive series of test problems, or examples, designed to test the various analysis and design features of the program have been created. The results produced by SAFE were compared to independent sources, such as hand calculated results and theoretical or published results. The comparison of the SAFE results with results obtained from independent sources is provided in tabular form as part of each example.

To validate and verify SAFE results, the test problems were run on a PC platform that was an Lenovo ThinkCentre machine with a Core i5, 2.67 GHz processor and 8.0 GB of RAM operating on a Windows 7 operating system.

ACCEPTANCE CRITERIA

The comparison of the SAFE validation and verification example results with independent results is typically characterized in one of the following three ways.

- **Exact:** There is no difference between the SAFE results and the independent results within the larger of the accuracy of the typical SAFE output and the accuracy of the independent result.
- Acceptable: For force, moment and displacement values, the difference between the SAFE results and the independent results does not exceed five percent (5%). For internal force and stress values, the difference between the SAFE results and the independent results does not exceed ten percent (10%). For experimental values, the difference between the SAFE results and the independent results does not exceed twenty five percent (25%).
- ➤ Unacceptable: For force, moment and displacement values, the difference between the SAFE results and the independent results exceeds five percent (5%).

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

For internal force and stress values, the difference between the SAFE results and the independent results exceeds ten percent (10%). For experimental values, the difference between the SAFE results and the independent results exceeds twenty five percent (25%).

The percentage difference between results is typically calculated using the following formula:

Percent Difference = $100 \left(\frac{\text{SAFE Result - Independent Result}}{\text{Maximum of Independent Result}} \right)$

SUMMARY OF EXAMPLES

Examples 1 through 7 verify the accuracy of the elements and the solution algorithms used in SAFE. These examples compare displacements and member internal forces computed by SAFE with known theoretical solutions for various slab support and load conditions.

Examples 8 through 14 verify the applicability of SAFE in calculating design moments in slabs by comparing results for practical slab geometries with experimental results and/or results using ACI 318-95 recommendations. Examples 15 and 16 verify the applicability of SAFE for temperature loading and cracked deflection analysis for creep and shrinkage by comparing the results from published examples.

Design examples verify the design algorithms used in SAFE for flexural, shear design of beam; flexural and punching shear of reinforced concrete slab; and flexural design and serviceability stress checks of post-tensioned slab, using ACI 318-14, ACI 318-11, ACI 318-08, AS 3600-09, AS 3600-01, BS 8110-97, CSA A23.3-14, CSA A23.3-04, Eurocode 2-02, Hong Kong CP-13, Hong Kong CP-04, IS 456-00, Italian NTC 2008, NZS 31-01-06, Singapore CP 65-99 and Turkish TS 500-2000 codes, by comparing SAFE results with hand calculations.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 1 Simply Supported Rectangular Plate

PROBLEM DESCRIPTION

A simply supported, rectangular plate is analyzed for three load conditions: uniformly distributed load over the slab (UL), a concentrated point load at the center of the slab (PL), and a line load along a centerline of the slab (LL).

To test convergence, the problem is analyzed employing three mesh sizes, 4×4 , 8×8 , and 12×12 , as shown in Figure 1-2. The slab is modeled using plate elements in SAFE. The simply supported edges are modeled as line supports with a large vertical stiffness. Three load cases are considered. Self weight is not included in these analyses.

To obtain design moments, the plate is divided into three strips — two edge strips and one middle strip — each way, based on the ACI 318-95 definition of design strip widths for a two-way slab system as shown in Figure 1-3.

For comparison with the theoretical results, load factors of unity are used and each load case is processed as a separate load combination.

Closed-form solutions to this problem are given in Timoshenko and Woinowsky (1959) employing a double Fourier Series (Navier's solution) or a single series (Lévy's solution). The numerically computed deflections, local moments, average strip moments, and local shears obtained from SAFE are compared with the corresponding closed form solutions.

SAFE results are shown for both thin plate and thick plate element formulations. The thick plate formulation is recommended for use in SAFE, as it gives more realistic shear forces for design, especially in corners and near supports and other discontinuities. However, thin plate formulation is consistent with the closed-form solutions.

GEOMETRY, PROPERTIES AND LOADING

Plate size,	$a \times b$	=	360 in × 240 in
Plate thickness	Т	=	8 inches
Modulus of elasticity	E	=	3000 ksi
Poisson's ratio	v	=	0.3

PROGRAM NAME: REVISION NO.:

Figure 1-1 Simply Supported Rectangular Plate

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Figure 1-2 SAFE Meshes for Rectangular Plate

0

PROGRAM NAME: **REVISION NO.:**

Figure 1-3 SAFE Definition of Design Strips

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

TECHNICAL FEATURES OF SAFE TESTED

- > Deflection of slab at various mesh refinements.
- > Local moments, average strip moments, and local shears

RESULTS COMPARISON

Table 1-1 shows the deflections of four different points for three different mesh refinements for the three load cases. The theoretical solutions based on Navier's formulations also are shown for comparison. It can be observed from Table 1-1 that the deflection obtained from SAFE converges monotonically to the theoretical solution with mesh refinement. Moreover, the agreement is acceptable even for the coarse mesh (4×4) .

Table 1-2 shows the comparison of the numerically obtained local-moments at critical points with that of the theoretical values. Only results from the 8x8 mesh are reported. The comparison with the theoretical results is acceptable.

Table 1-3 shows the comparison of the numerically obtained local-shears at critical points with that of the theoretical values. The comparison here needs an explanation. The theoretical values were presented for both thin plate and thick plate formulations. The theoretical values are for a thin plate solution where shear strains across the thickness of the plate are ignored. The SAFE results for thick plate are for an element that does not ignore the shear strains. The thin plate theory results in concentrated corner uplift; consideration of the shear strains spreads this uplift over some length of the supports near the corners. The shears reported by SAFE for thick plate are more realistic.

The results of Table 1-3 are plotted in Figures 1-4 to 1-15. In general, it can be seen that the thin plate formulation more closely matches the closed-form solution than does the thick plate solution, as expected. The closed-form solution cannot be used to validate the thick plate shears, since behavior is fundamentally different in the corners. This can be seen clearly in Figures 6, 7, 10, 11, 14 and 15 which show the shear forces trajectories for thin plate and thick plate solutions. The thin plate solution unrealistically carries loads to corners, whereas the thick plate solution carries the load more toward the middle of the sites.

Table 1-4 shows the comparison of the average strip-moments for the load cases with the theoretical average strip-moments. The comparison is excellent. This checks both the accuracy of the finite element analysis and the integration scheme over the elements.

PROGRAM NAME: REVISION NO.: SAFE 0

It should be noted that in calculating the theoretical solution, a sufficient number of terms from the series is taken into account to achieve the accuracy of the theoretical solutions.

Table 1-1 Comparison of Displacements

Thin-Plate Formulation

	Location		SAF	Theoretical		
Load Case	X (in)	Y (in)	4×4 Mesh	8×8 Mesh	12×12 Mesh	Displacement (in)
	60	60	0.0491	0.0492	0.0493	0.0492961
1.11	60	120	0.0685	0.0684	0.0684	0.0684443
UL	180	60	0.0912	0.0912 0.0908		0.0906034
	180	120	0.1279	0.1270	0.1267	0.1265195
	60	60	0.0371	0.0331	0.0325	0.0320818
ום	60	120	0.0510	0.0469	0.0463	0.0458716
FL	180	60	0.0914	0.0829	0.0812	0.0800715
	180	120	0.1412	0.1309	0.1283	0.1255747
	60	60	0.0389	0.0375	0.0373	0.0370825
LL	60	120	0.0593	0.0570	0.0566	0.0562849
	180	60	0.0735	0.0702	0.0696	0.0691282
	180	120	0.1089	0.1041	0.1032	0.1024610

PROGRAM NAME: REVISION NO.: SAFE 0

Thick-Plate formulation

	Location		SAF	Theoretical		
Load Case	X (in)	Y (in)	4×4 Mesh	8×8 Mesh	12×12 Mesh	Displacement (in)
	60	60	0.0485	0.0501	0.0501	0.0492961
	60	120	0.0679	0.0695	0.0694	0.0684443
UL	180	60	0.0890	0.0919	0.0917	0.0906034
	180	120	0.1250	0.1284	0.1281	0.1265195
	60	60	0.0383	0.0339	0.0330	0.0320818
וס	60	120	0.0556	0.0474	0.0469	0.0458716
FL	180	60	0.0864	0.0834	0.0821	0.0800715
	180	120	0.1287	0.1297	0.1293	0.1255747
	60	60	0.0387	0.0381	0.0378	0.0370825
LL	60	120	0.0583	0.0579	0.0574	0.0562849
	180	60	0.0719	0.0710	0.0703	0.0691282
	180	120	0.1060	0.1053	0.1044	0.1024610

PROGRAM NAME: REVISION NO.: SAFE 0

Table 1-2 Comparison of Local Moments

Thin-Plate Formulation

					Moment	(kip-in/in)		
	Location		M ₁₁		M ₂₂		M ₁₂	
Load Case	X (in)	Y (in)	SAFE 8×8	Analytical (Navier)	SAFE 8×8	Analytical (Navier)	SAFE 8×8	Analytical (Navier)
	150	15	0.42	0.45	0.73	0.81	0.31	0.30
	150	45	1.16	1.18	1.95	2.02	0.26	0.26
UL	150	75	1.66	1.69	2.69	2.77	0.17	0.17
	150	105	1.92	1.95	3.04	3.12	0.06	0.06
PL	150	15	0.37	0.37	0.36	0.36	0.44	0.47
	150	45	1.11	1.13	1.13	1.14	0.48	0.51
	150	75	1.92	1.90	2.16	2.20	0.56	0.59
	150	105	2.81	2.41	3.85	3.75	0.42	0.47
	150	15	0.26	0.26	0.34	0.34	0.24	0.24
	150	45	0.77	0.77	1.06	1.08	0.21	0.20
	150	75	1.25	1.25	1.91	1.92	0.14	0.14
	150	105	1.69	1.68	2.94	3.03	0.05	0.05

PROGRAM NAME: REVISION NO.: SAFE 0

Thick-Plate Formulation

	Moment (kip-in/in)							
	Location		M ₁₁		M ₂₂		M ₁₂	
Load Case	X (in)	Y (in)	SAFE 8×8	Analytical (Navier)	SAFE 8×8	Analytical (Navier)	SAFE 8×8	Analytical (Navier)
	150	15	0.43	0.45	0.74	0.81	0.31	0.30
	150	45	1.16	1.18	1.95	2.02	0.26	0.26
UL	150	75	1.66	1.69	2.69	2.77	0.17	0.17
	150	105	1.92	1.95	3.04	3.12	0.06	0.06
	150	15	0.29	0.37	0.34	0.36	0.43	0.47
	150	45	1.07	1.13	1.14	1.14	0.41	0.51
PL	150	75	1.91	1.90	2.15	2.20	0.42	0.59
	150	105	2.83	2.41	3.82	3.75	0.22	0.47
	150	15	0.27	0.26	0.34	0.34	0.24	0.24
LL	150	45	0.78	0.77	1.07	1.08	0.21	0.20
	150	75	1.25	1.25	1.91	1.92	0.14	0.14
	150	105	1.68	1.68	2.94	3.03	0.05	0.05

PROGRAM NAME: REVISION NO.: SAFE 0

Table 1-3 Comparison of Local Shears

Thin-Plate Formulation

				Shears (×	10 ^{−3} kip/in)		
	Location		V	/13	V ₂₃		
Load Case	X (in)	Y (in)	SAFE (8×8)	Analytical (Navier)	SAFE (8×8)	Analytical (Navier)	
	15	45	-27.54	-35.2	-5.76	-7.6	
	45	45	-16.07	-21.2	-17.19	-21.0	
UL	90	45	-7.31	-10.5	-28.39	-33.4	
	150	45	-1.71	-3.0	-36.23	-40.7	
ī	15	45	-4.84	-8.7	-2.43	-2.6	
	45	45	-6.75	-9.8	-8.57	-8.3	
ΓL	90	45	-12.45	-13.1	-20.53	-19.2	
	150	45	-11.19	-11.2	-34.82	-43.0	
	15	45	-13.2	-15.7	-4.57	-5.7	
L	45	45	-10.91	-13.0	-13.47	-16.2	
	90	45	-5.76	-7.6	-22.59	-26.5	
	150	45	-1.45	-2.2	-29.04	-32.4	

PROGRAM NAME: REVISION NO.: SAFE 0

Thick-Plate formulation

			Shears (×10⁻³ kip/in)				
	Location		V	13	V ₂₃		
Load Case	X (in)	Y (in)	SAFE (8×8)	Analytical (Navier)	SAFE (8×8)	Analytical (Navier)	
	15	45	-21.27	-35.2	24.75	-7.6	
	45	45	-7.57	-21.2	-6.35	-21.0	
UL	90	45	-2.30	-10.5	-29.83	-33.4	
	150	45	-0.92	-3.0	-43.13	-40.7	
	15	45	-0.66	-8.7	18.01	-2.6	
	45	45	1.83	-9.8	2.33	-8.3	
FL	90	45	-8.01	-13.1	-13.1 -14.89		
	150	45	-18.02	-11.2	-48.18	-43.0	
	15	45	-7.69	-15.7	19.71	-5.7	
LL	45	45	-2.07	-13.0	-4.89	-16.2	
	90	45	-1.43	-7.6	-23.51	-26.5	
	150	45	-0.63	-2.2	-34.25	-32.4	

PROGRAM NAME: REVISION NO.:

	-	 	
SAFE			
0			

Table 1-4 Comparison of Average Strip Moments

Thin-Plate Formulation

			SAFE	Theoretical Average Strip		
Load Case	Moment Direction	Strip	4×4 Mesh	8×8 Mesh	12×12 Mesh	(kip-in/in)
	$\overline{M}_{\scriptscriptstyle A}$	Column	0.758	0.800	0.805	0.810
	<i>x</i> = 180"	Middle	1.843	1.819	1.819	1.820
UL	${ar M}_{\scriptscriptstyle B}$	Column	0.974	0.989	0.992	0.994
	<i>y</i> = 120"	Middle	2.701	2.769	2.781	2.792
	$\overline{M}_{\scriptscriptstyle A}$	Column	0.992	0.958	0.926	0.901
	<i>x</i> = 180"	Middle	3.329	3.847	3.963	3.950
PL	$\overline{M}_{\scriptscriptstyle B}$	Column	0.440	0.548	0.546	0.548
	<i>y</i> = 120"	Middle	3.514	3.364	3.350	3.307
	\overline{M}_{A}	Column	0.547	0.527	0.522	0.519
LL	<i>x</i> = 180"	Middle	1.560	1.491	1.482	1.475
	$\overline{M}_{\scriptscriptstyle B}$	Column	1.205	1.375	1.418	1.432
	<i>y</i> = 120"	Middle	3.077	3.193	3.213	3.200

PROGRAM NAME: REVISION NO.: SAFE 0

Thick-Plate Formulation

			SAFE	Theoretical Average Strip			
Load Case	Moment Direction	Strip	4×4 Mesh	8×8 Mesh	12×12 Mesh	Moments (kip-in/in)	
	$\overline{M}_{\scriptscriptstyle A}$	Column	0.716	0.805	0.799	0.810	
	<i>x</i> = 180"	Middle	1.757	1.855	1.832	1.820	
UL	${ar M}_{\scriptscriptstyle B}$	Column	1.007	0.968	0.984	0.994	
	<i>y</i> = 120"	Middle	2.65	2.80	2.805	2.792	
	$\overline{M}_{\scriptscriptstyle A}$	Column	0.969	1.128	1.043	0.901	
וס	<i>x</i> = 180"	Middle	2.481	3.346	3.781	3.950	
FL	$\overline{M}_{\scriptscriptstyle B}$	Column	0.763	0.543	0.533	0.548	
	<i>y</i> = 120"	Middle	3.149	3.381	3.372	3.307	
	\overline{M}_{A}	Column	0.489	0.526	0.517	0.519	
LL	x = 180"	Middle	1.501	1.520	1.493	1.475	
	$\overline{M}_{\scriptscriptstyle B}$	Column	1.254	1.338	1.408	1.432	
	<i>y</i> = 120"	Middle	2.840	3.205	3.233	3.200	

PROGRAM NAME: REVISION NO.:

Figure 1-4 V₁₂ Shear Force for Uniform Loading

Figure 1-5 V₁₃ Shear Force for Uniform Loading

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Figure 1-6 V_{max} for Uniform Load for Thin-Plate Formulation

Figure 1-7 V_{max} for Uniform Load for Thick-Plate Formulation

PROGRAM NAME: REVISION NO.:

Figure 1-8 V₁₂ Shear Force for Point Loading

Figure 1-9 V₁₃ Shear Force for Point Loading

PROGRAM NAME:	SAFE
REVISION NO.:	0

Figure 1-10 V_{max} for Point Load for Thin-Plate Formulation

Figure 1-11 V_{max} for Point Load for Thick-Plate Formulation

PROGRAM NAME: REVISION NO.:

Figure 1-12 V₁₂ Shear Force for Line Loading

Figure 1-13 V₁₃ Shear Force for Point Loading

Figure 1-14 V_{max} for Line Load for Thin-Plate Formulation

Figure 1-15 V_{max} for Line Load for Thick-Plate Formulation

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: \underline{SA} REVISION NO.: $\underline{0}$

SAFE 0

COMPUTER FILE:

S01a-Thin.FDB, S01b-Thin.FDB, S01c-Thin.FDB, S01a-Thick.FDB, S01b-Thick.FDB and S01c-Thick.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

EXAMPLE 2

Rectangular Plate with Fixed Edges

PROBLEM DESCRIPTION

A fully fixed rectangular plate is analyzed for three load conditions. The geometric descriptions and material properties and the load cases are the same as those of Example 1. However, the boundary conditions are different. All edges are fixed, as shown in Figure 2-1. To test convergence, the problem is analyzed using three mesh sizes, as shown in Figure 1-2: 4×4 , 8×8 , and 12×12 . The plate is modeled using plate elements available in SAFE. The fixed edges are modeled as line supports with large vertical and rotational stiffnesses. The self weight of the plate is not included in any of the load cases. The numerical data for this problem are given in the following section.

A theoretical solution to this problem, employing a single series (Lévy's solution), is given in Timoshenko and Woinowsky (1959). The numerically computed deflections obtained from SAFE are compared with the theoretical values.

GEOMETRY, PROPERTIES AND LOADING

Plate size		$a \times b$	=	360"	$' \times 240''$	
Plate thickne	ess	Т	=	8 inches		
Modulus of I	Elasticity	E	=	3000 ksi		
Poisson's rati	io	v	=	0.3		
Load Cases: (UL) ((PL) I (LL) I	Uniform load Point load Live load	$\begin{array}{c} q \\ P \\ q_1 \end{array}$	= =	100 20 1	psf kips kip/ft	

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Figure 2-1 Rectangular Plate with All Edges Fixed

TECHNICAL FEATURES OF SAFE TESTED

Comparison of slab deflection with bench mark solution.

RESULTS COMPARISON

The numerical displacements obtained from SAFE are compared with those obtained from the theoretical solution in Table 2-1. The theoretical results are based on tabular values given in Timoshenko and Woinowsky (1959). A comparison of deflections for the three load cases shows a fast convergence to the theoretical values with successive mesh refinement.

PROGRAM NAME: <u>SAI</u> REVISION NO.: <u>0</u>

SAFE 0

Table 2-1 Comparison of Displacements

1 1	Location		SAF	Theoretical		
Load Case	X (in)	Y (in)	4×4 Mesh	8×8 Mesh	12×12 Mesh	Displacement (in)
	60	60	0.0098	0.0090	0.0089	
	60	120	0.0168	0.0153	0.0150	
UL	180	60	0.0237	0.0215	0.0210	
	180	120	0.0413	0.0374	0.0366	0.036036
	60	60	0.0065	0.0053	0.0052	
Ы	60	120	0.0111	0.0100	0.0100	
ΓL	180	60	0.0315	0.0281	0.0272	
	180	120	0.0659	0.0616	0.0598	0.057453
	60	60	0.0079	0.0072	0.0071	
	60	120	0.0177	0.0161	0.0158	
	180	60	0.0209	0.0188	0.0184	
	180	120	0.0413	0.0375	0.0367	

PROGRAM NAME: PREVISION NO.: SAFE 0

Thick Plate Formulation

	Location		SAF	Theoretical		
Load Case	X (in)	Y (in)	4×4 Mesh	8×8 Mesh	12×12 Mesh	Displacement (in)
	60	60	0.0085	0.0093	0.0091	
	60	120	0.0147	0.0156	0.0154	
UL	180	60	0.0214	0.0219	0.0215	
	180	120	0.0397	0.0381	0.0374	0.036036
	60	60	0.0083	0.0056	0.0053	
וס	60	120	0.0169	0.0101	0.0102	
FL	180	60	0.0270	0.0283	0.0278	
	180	120	0.0545	0.0600	0.0605	0.057453
	60	60	0.0072	0.0073	0.0073	
LL	60	120	0.0149	0.0165	0.0163	
	180	60	0.0198	0.0191	0.0188	
	180	120	0.0399	0.0382	0.0375	

COMPUTER FILE:

S02a-Thin.FDB. S02b-Thin.FDB, S02c-Thin.FDB, S02a-Thick.FDB. S02b-Thick.FDB, and S02c-Thick.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 3

Rectangular Plate with Mixed Boundary

PROBLEM DESCRIPTION

The plate, shown in Figure 3-1, is analyzed for uniform load only. The edges along x = 0 and x = a are simply supported, the edge along y = b is free, and the edge along y = 0 is fully fixed. The geometrical description and material properties of this problem are the same as those of Example 1. To test convergence, the problem is analyzed employing three mesh sizes, as shown in Figure 1-2: 4×4 , 8×8 , and 12×12 . The plate is modeled using plate elements available in SAFE. The two simply supported edges are modeled as line supports with large vertical stiffnesses. The fixed edge is modeled as a line support with large vertical and rotational stiffnesses. The self weight of the plate is not included in the analysis.

An explicit analytical expression for the deflected surface is given in Timoshenko and Woinowsky (1959). The deflections obtained from SAFE are compared with the theoretical values.

GEOMETRY, PROPERTIES AND LOADING

Plate size	$a \times b$	=	360" × 240'
Plate thickness	Т	=	8 inches
Modulus of elasticity	E	=	3000 ksi
Poisson's ratio	V	=	0.3
Load Cases:			
Uniform load	q	=	100 psf

TECHNICAL FEATURES OF SAFE TESTED

Comparison of deflection with bench-mark solution.

RESULTS COMPARISON

The numerical solution obtained from SAFE is compared with the theoretical solution that is given by Lévy (Timoshenko and Woinowsky 1959). Comparison of deflections shows monotonic convergence to the theoretical values with successive mesh refinement as depicted in Table 3-1. It is to be noted that even with a coarse mesh (4×4) the agreement is very good.

PROGRAM NAME: SAFE REVISION NO.: 0

Figure 3-1 Rectangular Plate with Two Edges Simply Supported, One Edge Fixed and One Edge Free

PROGRAM NAME: SAFE REVISION NO.: 0

Table 3-1 Comparison of Displacements

Thin Plate Formulation

Loca	Location SAFE Displacement (in)				Theoretical
X (in)	Y (in)	4×4 Mesh	4×4 Mesh 8×8 Mesh 12×12		Displacement (in)
180	0	0.0000	0.0000	0.0000	0.0000
180	60	0.0849	0.0831	0.0827	0.08237
180	120	0.2410	0.2379	0.2372	0.23641
180	180	0.3971	0.3947	0.3940	0.39309
180	240	0.5537	0.5511	0.5502	0.54908

Thick Plate Formulation

Loca	ation	SAF	Theoretical		
X (in)	Y (in)	4×4 Mesh	4×4 Mesh 8×8 Mesh 1		Displacement (in)
180	0	0.0000	0.0000	0.0000	0.0000
180	60	0.0806	0.0841	0.0839	0.08237
180	120	0.2338	0.2398	0.2392	0.23641
180	180	0.3837	0.3973	0.3970	0.39309
180	240	0.5322	0.5544	0.5542	0.54908

COMPUTER FILE:

S03a-Thin.FDB, S03b-Thin.FDB, S03c-Thin.FDB, S03a-Thick.FDB, S03b-Thick.FDB, and S03c-Thick.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 4 Rectangular Plate on Elastic Beams

PROBLEM DESCRIPTION

The plate, shown in Figure 4-1, is analyzed for a uniformly distributed surface load. The edges along x = 0 and x = a are simply supported, and the other two edges are supported on elastic beams. It is assumed that the beams resist bending in vertical planes only and do not resist torsion. A theoretical solution to this problem is given in Timoshenko and Woinowsky (1959). The deflections of the plate and the moments and shears of the edge beams are compared with both the theoretical solution and the results obtained using the Direct Design Method as outlined in ACI 318-95 for a relative stiffness factor, λ , equal to 4. The relative stiffness, λ , is the ratio of the bending stiffness of the beam and the bending stiffness of the slab with a width equal to the length of the beam and is given by the following equation.

$$\lambda = \frac{EI_b}{aD}$$
, where,

$$D = \frac{Eh^3}{12\left(1 - v^2\right)}$$

- I_b is the moment of inertia of the beam about the horizontal axis,
- *a* is the length of the beam, which also is equal to the one side of the slab, and
- h is the thickness of the slab.

To test convergence of results, the problem is analyzed employing three mesh sizes, as shown in Figure 1-2: 4×4 , 8×8 , and 12×12 . The slab is modeled using plate elements. The simply supported edges are modeled as line supports with a large vertical stiffness and zero rotational stiffness. Beam elements, with no torsional rigidity, are defined on edges y = 0 and y = b. The flexural stiffness of edge beams is expressed as a λ factor of the plate flexural stiffness.

PROGRAM NAME: REVISION NO.: SAFE 0

The subdivision of the plate into column and middle strips and also the definition of tributary loaded areas for shear calculations comply with ACI 318-95 provisions and shown in Figure 4-2. A load factor of unity is used and the self weight of the plate is not included in the analysis.

Figure 4-1 Rectangular Plate on Elastic Beams

PROGRAM NAME:	SAFE
REVISION NO.:	0

Tributary Loaded Area for Shear on Edge Beams

Figure 4-2 Definition of Slab Strips and Tributary Areas for Shear on Edge Beams

PROGRAM NAME: REVISION NO.: SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Plate size	$a \times b$	=	360" × 240"
Plate thickness	Т	=	8 inches
Modulus of elasticity	E	=	3000 ksi
Poisson's ration	v	=	0.3
Beam moment of inertia	I_b	=	4
Relative stiffness paramete	r λ	=	4
Load Case:	q	=	100 psf (Uniform load)

TECHNICAL FEATURES OF SAFE TESTED

> Comparisons of deflection with benchmark solution.

RESULTS COMPARISON

Table 4-1 shows monotonic convergence of SAFE deflections for $\lambda = 4$ to the theoretical values with successive mesh refinement. Table 4-2 shows the variation of bending moment in the edge beam along its length for $\lambda = 4$. The theoretical solution and the ACI approximation using the Direct Design Method also are shown.

The value of λ is analogous to the ACI ratio $\alpha_1 l_2 / l_1$ (refer to Sections 13.6.4.4 and 13.6.5.1 of ACI 318-95). The correlation between the numerical results from SAFE and the theoretical results is excellent. For design purposes, the ACI approximation (Direct Design Method) compares well with the theory. For the Direct Design Method, the moments are obtained at the grid points. In obtaining SAFE moments, averaging was performed at the grid points.

In obtaining the ACI moments, the following quantities were computed:

$$\alpha_{I} = E_{cb}I_{b}/E_{cs}I_{s} = 6.59375,$$

$$l_{2}/l_{I} = 240/360 = 0.667,$$

$$\alpha_{I}l_{2}/l_{I} = 4.3958,$$

$$\beta_{t} = 0,$$

$$M_{0} = 2700 \text{ k-in.}$$

From ACI section 13.6.4.4 for $l_2/l_1 = 0.667$ and $\alpha_1 l_2/l_1 = 4.3958$, it is determined that the column strip supports 85% of the total positive moment. The beam and slab do not carry any negative moment about the Y-axis because of the simply supported boundary conditions at x = 0 and x = *a*.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

From ACI section 13.6.5.1 for $\alpha_1 l_2 / l_1 = 4.3958$, it is determined that the beam carries 85% of the total column strip moment. Since one beam supports only one-half of the column strip, the maximum beam positive moment is as follows

$$\begin{split} M_{\text{positivebeam}} &= 0.85 \times 0.85 \times 0.5 \times M_{\theta} \\ &= 0.36125 \times 2700 \\ &= 975.375 \text{ k-in} \end{split}$$

The beam moments at other locations are obtained assuming a parabolic variation along the beam length.

Table 4-3 shows the variation of shear in edge beams for $\lambda = 4$. The agreement is good considering that the SAFE element considers shear strains and the theoretical solution does not. The ACI values are calculated based on the definition of loaded tributary areas given in Section 13.6.8.1 of ACI 318-95. The shear forces were obtained at the middle of the grid points. In obtaining SAFE shear, no averaging was required for the shear forces.

Table 4-1 Comparison of Displacements

Loca	ation	SAF	Theoretical		
X (in)	Y (in)	4×4 Mesh 8×8 Mesh		12×12 Mesh	Displacement (in)
180	120	0.1812	0.1848	0.1854	0.18572
180	60	0.1481	0.1523	0.1530	0.15349
180	0	0.0675	0.0722	0.0730	0.07365

Thin Plate Formulation

Loca	ation	SAF	Theoretical		
X (in)	Y (in)	4×4 Mesh 8×8 Mesh		12×12 Mesh	Displacement (in)
180	120	0.1792	0.1856	0.1862	0.18572
180	60	0.1467	0.1529	0.1536	0.15349
180	0	0.0677	0.0721	0.0730	0.07365

PROGRAM NAME: REVISION NO.:

Table 4-2 Variation of Average Bending Moment in an Edge Beam (λ = 4) Thin Plate Formulation

Loc	ation	Edge Beam Moment (k-in)					
Y (in)	X (in)	4×4 Mesh 8×8 Mesh 12×12 Mesh			ACI	Theoretical	
	0	0.571	0.12	0.05	0	0	
	30	_	313.0	—	298.031	313.4984	
0, 240	60	590.8	591.4	591.5	541.875	591.6774	
	120	-	984.9	_	867.000	984.7026	
	180	1120.9	1120.8	1120.4	975.375	1120.1518	

Location		Edge Beam Moment (k-in)					
Y (in)	X (in)	4×4 Mesh 8×8 Mesh 12		12×12 Mesh	ACI	Theoretical	
0, 240	0	5.3	31.5	25.2	0	0	
	30	_	309.2	_	298.031	313.4984	
	60	591.0	586.8	592.1	541.875	591.6774	
	120	—	981.3	_	867.000	984.7026	
	180	1120.2	1116.4	1118.4	975.375	1120.1518	

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

Table 4-3 Variation of Shear in an Edge Beam (λ = 4)

Location		Edge Beam Shear (k)					
Y (in)	X (in)	4×4 Mesh 8×8 Mesh		12×12 Mesh	ACI	Theoretical	
0, 240	10		_	10.58	9.9653	10.6122	
	15		10.4	—	9.9219	10.4954	
	30	9.80	-	9.96	9.6875	9.9837	
	45	_	9.26	—	9.2969	9.2937	
	50	_	—	9.02	9.1319	9.0336	
	80	—	_	7.23	7.7778	7.2458	
	90	4.40	6.55		7.1875	6.5854	
	120	-	—	4.48	5.0000	4.4821	
	150	_	2.26	_	2.5000	2.2656	
	160	_	_	1.51	1.6667	1.5133	

PROGRAM NAME: REVISION NO.: SAFE 0

Thick Plate Formulation

Location		Edge Beam Shear (k)					
Y (in)	X (in)	4×4 Mesh 8×8 Mesh		12×12 Mesh	ACI	Theoretical	
0, 240	10	_		8.04	9.9653	10.6122	
	15		8.31		9.9219	10.4954	
	30	9.59		7.91	9.6875	9.9837	
	45	—	7.57	Ι	9.2969	9.2937	
	50			7.43	9.1319	9.0336	
	80			6.39	7.7778	7.2458	
	90	4.32	4.32 6.03		7.1875	6.5854	
	120	_	_	4.06	5.0000	4.4821	
	150		2.08	—	2.5000	2.2656	
	160	_	_	1.38	1.6667	1.5133	

COMPUTER FILE:

S04a-Thin.FDB, S04b-Thin.FDB, S04c-Thin.FDB, S04a-Thick.FDB, S04b-Thick.FDB, and S04c-Thick.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

EXAMPLE 5 Infinite Flat Plate on Equidistant Columns

PROBLEM DESCRIPTION

The plate, shown in Figure 5-1, is analyzed for uniform load. The overall dimensions of the plate are significantly larger than the column spacing (a and b in Figure 5-1). Analysis is limited to a single interior panel because it can be assumed that deformation is identical for all panels in the plate. An analytical solution, based on the foregoing assumption, is given in Timoshenko and Woinowsky (1959).

Three mesh sizes, as shown in Figure 1-2, are used to test the convergence property of the model: 4×4 , 8×8 , and 12×12 . The model consists of a panel of uniform thickness supported at four corners point. The effect of column support within a finite area is not modeled. Due to symmetry, the slope of the deflection surface in the direction normal to the boundaries is zero along the edges and the shearing force is zero at all points along the edges of the panel, except at the corners. To model this boundary condition, line supports with a large rotational stiffness about the support line are defined on all four edges. Additional point supports are provided at the corners. The panel is modeled using plate elements in SAFE. In doing so, the effect of shear distortion is included.

To compare the effects of corner stiffness at the column/slab intersection, a duplicate model of the 12 x 12 mesh was created where this region is approximately modeled. This was done by using a special stiff area section in the region concerned, shown as the $40" \times 40"$ area in Figure 5-2, of which a 20" x 20" portion lies within the modeled region. To obtain design moments, the panel is divided into three strips both ways, two column strips and one middle strip, based on the ACI 318-95 definition of design strip widths, as shown in Figure 5-2 and in Figure 5-3. A load factor of unity is used. The self weight of the panel is not included in the analysis.

Tables 5-1 through 5-3 show the comparison of the numerically computed deflection, local moments, and local shears obtained from SAFE with their theoretical counterparts.

Table 5-4 shows the comparison of the average design strip moments obtained from SAFE with those obtained from the theoretical method and two ACI alternative methods: the Direct Design Method (DDM) and the Equivalent Frame Method (EFM).

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 5-1 Infinite Plate on Equidistant Columns and Detail of Panel used in Analysis

Material Properties and Loa	<u>ad</u>
Modulus of Elasticity	= 3000 ksi
Poisson's Ratio	= 0.3
Uniform Load	= 100 psf

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

Figure 5-2 Definition of X-Strips (Moment values obtained by EFM)

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 5-3 Definition of Y-Strips (Moment values obtained by EFM)

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

GEOMETRY, PROPERTIES AND LOADING

$a \times b$	=	360" × 240"
Т	=	8 inches
E	=	3000 ksi
v	=	0.3
q	=	100 psf (Uniform load)
	$\begin{array}{c} a \times b \\ T \\ E \\ v \\ q \end{array}$	$\begin{array}{rcl} a \times b & = & \\ T & = & \\ E & = & \\ v & = & \\ q & = & \end{array}$

TECHNICAL FEATURES OF SAFE TESTED

> Comparisons of deflection with benchmark solution.

RESULTS COMPARISON

Table 5-1 shows the comparison of the numerical and the theoretical deflections. The data indicates monotonic convergence of the numerical solution to the theoretical values with successive mesh refinement.

The SAFE results for local moment and shear also compare closely with the theoretical values, as shown in Table 5-2 and Table 5-3, respectively.

In Table 5-4 average strip moments obtained from SAFE are compared with both the ACI and the theoretical values. EFM is used to calculate the interior span moments as depicted in Figure 5-2 and Figure 5-3. The agreement between the SAFE and the theoretical solution is excellent. ACI approximations, employing either DDM or EFM, however, deviate from the theory. It should be noted that, regardless of the method used, the absolute sum of positive and negative moments in each direction equals the total static moment in that direction.

Table 5-5 shows the effect of corner rigidity. Comparisons with the EFM method are shown.

PROGRAM NAME: REVISION NO.:

Table 5-1 Comparison of Displacements

Thin Plate Formulation

Location		SAF	Theoretical		
X (in)	Y (in)	4×4 Mesh	8×8 Mesh	12×12 Mesh	Displacement (in)
0	0	0.263	0.278	0.280	0.280
0	60	0.264	0.274	0.275	0.275
0	120	0.266	0.271	0.271	0.270
120	0	0.150	0.153	0.153	0.152
120	120	0.101	0.101	0.100	0.098
180	0	0.114	0.108	0.106	0.104
180	60	0.072	0.069	0.067	0.065
180	120	0.000	0.000	0.000	0.000

Location		SAF	Theoretical		
X (in)	Y (in)	4×4 Mesh	8×8 Mesh	12×12 Mesh	Displacement (in)
0	0	0.249	0.279	0.284	0.280
0	60	0.252	0.276	0.280	0.275
0	120	0.252	0.273	0.275	0.270
120	0	0.139	0.155	0.157	0.152
120	120	0.082	0.101	0.103	0.098
180	0	0.094	0.109	0.110	0.104
180	60	0.052	0.069	0.070	0.065
180	120	0.000	0.000	0.000	0.000

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

Table 5-2 Comparison of Local Moments

Thin Plate Formulation

		Moments (k-in/in)				
Location		M ₁₁		M ₂₂		
X (in)	Y (in)	SAFE (8×8)	Theoretical	SAFE (8×8)	Theoretical	
30	15	3.093	3.266	1.398	1.470	
30	105	3.473	3.610	0.582	0.580	
165	15	-2.948	-3.142	1.887	1.904	
165	105	-9.758	-9.804	-7.961	-7.638	

		Moments (k-in/in)				
Location		M ₁₁		M ₂₂		
X (in)	Y (in)	SAFE (8×8)	Theoretical	SAFE (8×8)	Theoretical	
30	15	3.115	3.266	1.394	1.470	
30	105	3.446	3.610	0.583	0.580	
165	15	-2.977	-3.142	1.846	1.904	
165	105	-9.686	-9.804	-7.894	-7.638	

PROGRAM NAME: REVISION NO.:

Table 5-3 Comparison of Local Shears

Thin Plate Formulation

		Shears (×10 ⁻³ k)				
Loca	ation	V ₁₃		V ₂₃		
X (in)	Y (in)	SAFE (8×8)	Theoretical	SAFE (8×8)	Theoretical	
30	45	20.9	17.3	8.2	2.2	
30	105	21.2	23.5	3.1	5.4	
165	15	17.3	14.7	19.1	23.8	
165	105	357.1	329.0	350.4	320.0	

		Shears (×10 ⁻³ k)				
Location		V ₁	3	V ₂₃		
X (in)	Y (in)	SAFE (8×8)	Theoretical	SAFE (8×8)	Theoretical	
30	45	20.2	17.3	8.7	2.2	
30	105	24.3	23.5	8.1	5.4	
165	15	26.7	14.7	24.7	23.8	
165	105	287.5	329.0	277.6	320.0	

PROGRAM NAME: \underline{SA} REVISION NO.: $\underline{0}$

SAFE 0

Table 5-4 Comparison of Average Strip Moments

Thin Plate Formulation

			SAFE Moments (k-in/in)				ACI 3 (k-ii	18-95 า/in)
Average Moment	Location	Strip	4×4 Mesh	8×8 Mesh	12×12 Mesh	Theoretical (k-in/in)	DDM	EFM
\overline{M}	v 190"	Column	4.431	3.999	3.922	3.859	4.725	4.500
IVI A	x = 160	Middle	4.302	3.805	3.711	3.641	3.150	3.000
M	w 200"	Column	-10.184	-10.865	-10.971	-11.091	-10.968	-11.250
IVI A	x = 300	Middle	-3.524	-3.777	-3.843	-3.891	-3.656	-3.750
M		Column	2.265	2.028	1.971	1.925	3.150	3.000
IVI _B	<i>y</i> = 120"	Middle	1.674	1.561	1.547	1.538	1.050	1.000
\overline{M}		Column	-8.236	-8.902	-9.000	-9.139	-7.313	-7.500
IVI B	<i>y</i> = 240"	Middle	-0.551	-0.449	-0.442	-0.430	-1.219	-1.250

			SAFE Moments (k-in/in)				ACI : (k-	318-95 in/in)
Average Moment	Location	Strip	4×4 Mesh	8 × 8 Mesh	12 × 12 Mesh	Theoretical (k-in/in)	DDM	EFM
M	x - 190"	Column	4.802	4.079	3.952	3.859	4.725	4.500
	x = 160	Middle	3.932	3.726	3.682	3.641	3.150	3.000
M	x 260"	Column	-8.748	-10.691	-10.993	-11.091	-10.968	-11.250
	x = 300	Middle	-4.965	-3.954	-3.823	-3.891	-3.656	-3.750

PROGRAM NAME: REVISION NO.: SAFE 0

Thick Plate Formulation

			SAFE Moments (k-in/in)				ACI : (k-	318-95 in/in)
Average Moment	Location	Strip	4×4 Mesh	8×8 Mesh	12×12 Mesh	Theoretical (k-in/in)	DDM	EFM
M		Column	2.361	2.078	2.000	1.925	3.150	3.000
IVI _B	<i>y</i> = 120"	Middle	1.628	1.537	1.533	1.538	1.050	1.000
\overline{M}		Column	-6.321	-8.670	-9.025	-9.139	-7.313	-7.500
IVI _B	<i>y</i> = 240"	Middle	-1.514	-0.567	-0.431	-0.430	-1.219	-1.250

Table 5-5 Comparison of Average Strip Moments : Effect of Corner Rigidity

			SAFE Moments (12×12 Mesh) (k-in/in)		ACI 318-95 (EFM Method) (k-in/in)	
Average Moment	Location	Strip	Slab Corner Non-Rigid	Slab Corner Rigid	Slab Corner Non-Rigid	Slab Corner Rigid
\overline{M}	v 190"	Column	3.922	3.472	4.500	3.555
IVI A	x = 160	Middle	3.711	3.285	3.000	2.370
M	v 260"	Column	-10.971	-8.110	—	-8.887
IVI _A	x = 360	Middle	-3.843	-2.863	—	-2.962
\overline{M}		Column	1.971	1.470	3.000	2.085
IVI B	<i>y</i> = 120"	Middle	1.547	1.361	1.000	0.695
\overline{M}		Column	-4.807	-5.489	_	-5.206
IVI _B	<i>y</i> = 240"	Middle	-0.272	-0.347	—	-0.867

PROGRAM NAME: \underline{SA} REVISION NO.:0

SAFE 0

Thick Plate Formulation

			SAFE Moments (12×12 Mesh) (k-in/in)		ACI 318-95 (EFM Method) (k-in/in)	
Average Moment	Location	Strip	Slab Corner Non-Rigid	Slab Corner Rigid	Slab Corner Non-Rigid	Slab Corner Rigid
\overline{M}	v 190"	Column	3.952	3.459	4.500	3.555
IVI _A	x = 180	Middle	3.682	3.219	3.000	2.370
M		Column	-10.993	-8.249	_	-8.887
IVI _A	x = 360	Middle	-3.823	-2.806	_	-2.962
\overline{M}		Column	2.000	1.456	3.000	2.085
IVI _B	<i>y</i> = 120"	Middle	1.533	1.327	1.000	0.695
M		Column	-9.025	-5.742		-5.206
<i>IVI</i> _B	<i>y</i> = 240"	Middle	-0.431	-0.263	_	-0.867

COMPUTER FILE:

S05a-Thin.FDB, S05b-Thin.FDB, S05c-Thin.FDB, S05d.FDB, S05a-Thick.FDB, S05b-Thick.FDB, and S05d-Thick.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 6

Infinite Flat Plate on Elastic Subgrade

PROBLEM DESCRIPTION

An infinite plate resting on elastic subgrade and carrying equidistant and equal loads, P, is shown in Figure 6-1. Each load is assumed to be distributed uniformly over the area $u \times v$ of a rectangle. A theoretical double series solution to this example is given in Timoshenko and Woinowsky (1959).

The numerically computed deflections and local moments obtained from SAFE are compared to the theoretical values, as shown in Table 6-1 and Table 6-2.

Analysis is confined to a single interior panel. To model the panel, three mesh sizes, as shown in Figure 1-2, are used: 4×4 , 8×8 , and 12×12 . The slab is modeled using plate elements and the elastic support is modeled as a surface support with a spring constant of k, the modulus of subgrade reaction. The edges are modeled as line supports with a large rotational stiffness about the support line. Point loads P/4 are defined at the panel corners. In the theoretical formulation (Timoshenko and Woinowsky 1959), each column load P is assumed to be distributed over an area $u \times v$ of a rectangle, as shown in Figure 6-1. To apply the theoretical formulation to this problem, concentrated corner loads are modeled as a uniformly distributed load acting over a very small rectangular area where u and v are very small.

GEOMETRY, PROPERTIES AND LOADING

J
× v)

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Figure 6-1 Rectangular Plate on Elastic Subgrade

PROGRAM NAME:	SAFE
REVISION NO.:	0

TECHNICAL FEATURES OF SAFE TESTED

Comparison of deflection on elastic foundation.

RESULTS COMPARISON

Good agreement has been found between the numerical and theoretical deflection for k = 1 ksi/in, as shown in Table 6-1, except near the concentrated load. The consideration of shear strains in the SAFE element makes it deflect more near the concentrated load. As the modulus k is changed, the distribution of pressure between the plate and the subgrade changes accordingly. The particular case, as k approaches 0, corresponds to a uniformly distributed subgrade reaction, i.e., to the case of a "reversed flat slab" uniformly loaded with q = P/ab. In fact the problem changes to that of Example 5, with the direction of vertical axis reversed. In Example 5, for a uniform load of 100 psf (P = 60 kips), the maximum relative deflection is calculated as 0.280. Applying the formulation used here with $k = 1 \times 10^{-6}$ yields a deflection value of 0.279". Table 6-2 shows the comparison of the SAFE local moments using the 12×12 mesh with the theoretical results. The results agree well.

Table 6-1 Comparison of Displacements

Location		SAF	Theoretical		
X (in)	Y (in)	4×4 Mesh 8×8 Mesh 12×12 Mesh		Displacement (in)	
0	0	-0.0493	-0.05410	-0.05405	-0.05308
180	60	0.00091	0.00076	0.00080	0.00096
180	120	0.00040	0.00060	0.00064	0.00067

Thin Plate Formulation

Location		SAF	Theoretical		
X (in)	Y (in)	4×4 Mesh 8×8 Mesh 12×12 Mesh		Displacement (in)	
0	0	-0.0436	-0.06011	-0.06328	-0.05308
180	60	0.00130	0.00074	0.00076	0.00096
180	120	-0.0019	0.00050	0.00059	0.00067

PROGRAM NAME: REVISION NO.:

Table 6-2 Comparison of Local Moments

Thin Plate Formulation

		Moments (kip-in/in)			
Location		M ₁₁		M ₂₂	
X (in)	Y (in)	SAFE (12×12)	Theoretical	SAFE (12×12)	Theoretical
10	10	37.99	35.97	37.97	35.56
10	50	7.38	7.70	-6.74	-6.87
10	110	-0.30	-0.27	-5.48	-5.69
80	10	-6.52	-6.89	1.98	1.72
80	50	-3.58	-3.78	-0.93	-1.02
80	110	-0.88	-0.98	-1.86	-1.69

		Moments (kip-in/in)			
Location		M ₁₁		M ₂₂	
X (in)	Y (in)	SAFE (12×12)	Theoretical	SAFE (12×12)	Theoretical
10	10	36.77	35.97	36.73	35.56
10	50	7.13	7.70	-6.37	-6.87
10	110	-0.21	-0.27	-5.17	-5.69
80	10	-6.11	-6.89	2.05	1.72
80	50	-3.56	-3.78	-0.82	-1.02
80	110	-0.87	-0.98	-1.86	-1.69

PROGRAM NAME: SAFE REVISION NO.: 0

COMPUTER FILE:

S06a-Thin.FDB, S06b-Thin.FDB, S06c-Thin.FDB, S06a-Thick.FDB, S06b-Thick.FDB and S06c-Thick.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

EXAMPLE 7 Skewed Plate with Mixed Boundary

PROBLEM DESCRIPTION

A skewed plate under uniform load, as shown in Figure 7-1, is analyzed for two different support configurations. In the first case, all the edges are assumed to be simply supported. In the second case, the edges y = 0 and y = b are released, i.e., the plate is assumed to be supported on its oblique edges only. A theoretical solution to this problem is given in Timoshenko and Woinowsky (1959). In both cases, the maximum deflection and the maximum moment are compared with the corresponding theoretical values.

An 8×24 base mesh is used to model the plate, as shown in Figure 7-1. A large vertical stiffness is defined for supports, and support lines are added on all four edges for the first case and along the skewed edges only for the second case. A load factor of unity is used. The self weight of the plate is not included in the analysis.

GEOMETRY, PROPERTIES, AND LOADING

Plate size	$a \times b$	$= 480'' \times 240'$
Plate thickness	T	= 8 inches
Modulus of elasticit	y E	= 3,000 ksi
Poisson's ratio	V	= 0.2
Load Cases:	Uniform load, q	= 100 psf

TECHNICAL FEATURES OF SAFE TESTED

> Comparison of deflection and moments on skewed plate.

PROGRAM NAME: REVISION NO.: SAFE 0

Support Conditions:

- (1) Simply supported on all edges
- (2) Simply supported on oblique edges

Figure 7-1 Skew Plate

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

RESULTS COMPARISON

Under the simply supported boundary condition, maximum deflection occurs at the plate center and the maximum principal moment acts nearly in the direction of the short span. Under the simply supported condition on the oblique edges and free boundary conditions on the other two edges, maximum deflection occurs at the free edge as expected.

Boundary Condition	Responses	SAFE		Theoretical
		Thin Plate	Thick Plate	
Simply supported	Maximum displacement (inches)	0.156	0.160	0.162
on all edges	Maximum bending moment (k-in)	3.66	3.75	3.59
Simply supported on oblique edges	Maximum displacement at the free edges (in)	1.51	1.52	1.50
	Maximum bending moment of the free edges (k-in)	12.03	12.28	11.84
Simply supported on oblique edges	Displacement at the center (in)	1.21	1.23	1.22
	Maximum bending moment at the center (k-in)	11.78	11.81	11.64

Table 7-1 Comparison of Deflections and Bending Moments

COMPUTER FILES

S07a-Thin.FDB, S07b-Thin.FDB, S07a-Thick.FDB and S07b-Thick.FDB

CONCLUSION

The comparison of SAFE and the theoretical results is acceptable, as shown in Table 7-1.

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

EXAMPLE 8 ACI Handbook Flat Slab Example 1

PROBLEM DESCRIPTION

The flat slab system, arranged three-by-four, is shown in Figure 8-1. The slab consists of twelve 7.5-inch-thick $18' \times 22'$ panels. Edge beams on two sides extend 16 inches below the slab soffit. Details are shown in Figure 8-2. There are three sizes of columns and in some locations, column capitals. Floor to floor heights below and above the slab are 16 feet and 14 feet respectively. A full description of this problem is given in Example 1 of ACI 340.R-97 (ACI Committee 340, 1997). The total factored moments in an interior E-W design frame obtained from SAFE are compared with the corresponding results obtained by the Direct Design Method, the Modified Stiffness Method, and the Equivalent Frame Method.

The computational model uses a 10×10 mesh of elements per panel, as shown in Figure 8-3. The mesh contains gridlines at column centerlines, column faces, and the edges of column capitals. The grid lines extend to the slab edges. The regular slab thickness is 7.5". A slab thickness of 21.5" is used to approximately model a typical capital. The slab is modeled using plate elements. The columns are modeled as point supports with vertical and rotational stiffnesses. Stiffness coefficients used in the calculation of support flexural stiffness are all reproduced from ACI Committee 340 (1997). Beams are defined on two slab edges, as shown in Figure 8-1.

The model is analyzed for a uniform factored load of 0.365 ksf ($w_u = 1.4w_d + 1.7w_t$) in total, including self weight. To obtain factored moments in an E-W interior design frame, the slab is divided into strips in the X-direction (E-W direction), as shown in Figure 8-4. An interior design frame consists of one column strip and two halves of adjacent middle strips.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Figure 8-1 Flat Slab from ACI Handbook

PROGRAM NAME: SAFE REVISION NO.: 0

SECTION A-A

Figure 8-2 Sections and Details of ACI Handbook Flat Slab Example

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 8-3 SAFE Mesh (10 × 10 per panel)

PROGRAM NAME:	SAFE
REVISION NO.:	0

Figure 8-4 Definition of E-W Design Frames and Strips

0

PROGRAM NAME: **REVISION NO.:**

Figure 8-5 Comparison of Total Factored Moments (E-W Design Frame)

PROGRAM NAME:	SAFE
REVISION NO.:	0

GEOMETRY, PROPERTIES AND LOADING

f_c '	=	3	ksi
f_y	=	40	ksi
γ_c	=	150	pcf
E_c	=	3320	ksi
v	=	0.2	
	$egin{array}{c} f_c' \ f_y \ \gamma_c \ E_c \ u \end{array}$	$egin{array}{rcl} f_c' &=& \ f_y &=& \ \gamma_c &=& \ E_c &=& \ v &=& \end{array}$	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TECHNICAL FEATURES OF SAFE TESTED

Comparison of factored moments in slab.

RESULTS COMPARISON

The SAFE results for the total factored moments in an interior E-W design frame are compared in Figure 8-5 with the results obtained by the Direct Design Method (DDM), the Modified Stiffness Method (MSM), and the Equivalent Frame Method (EFM). Only uniform loading with load factors of 1.4 and 1.7 has been considered. The DDM, MSM, and EFM results are all reproduced from Example 1 of ACI Committee 340 (1997), the Alternative Example 1 of ACI Committee 340 (1991), and from Example 3 of ACI Committee 340 (1991), respectively. Moments reported are calculated at the face of column capitals. Overall, they compare well. A noticeable discrepancy is observed in the negative column moment in the west side of the exterior bay (the edge beam side). In contrast to the EFM, the DDM appears to underestimate this moment. The SAFE result are between the two extreme values. The basic cause of this discrepancy is the way in which each method accounts for the combined flexural stiffness of columns framing into the joint. The DDM uses a stiffness coefficient k_c of 4 in the calculation of column and slab flexural stiffnesses. The EFM, on the other hand, uses higher value of k_c to allow for the added stiffness of the capital and the slab-column joint. The use of MSM affects mainly the exterior bay moments, which is not the case when the DDM is employed. In SAFE, member contributions to joint stiffness are dealt with more systematically than any of the preceding approaches. Hence, the possibility of over designing or under designing a section is greatly reduced.

The factored strip moments are compared in Table 8-1. There is a discrepancy in the end bays, particularly on the edge beam (west) side, where the SAFE and EFM results for exterior negative column strip moment show the greatest difference. This is expected because EFM simplifies a 3D structure to a 2D structure, thereby neglecting the transverse interaction between adjacent strips. Except for this localized difference, the comparison is good.

PROGRAM NAME: REVISION NO.: SAFE 0

Table 8-1 Comparison of Total Factored Strip Moments (k-ft) (Interior E-W Design Frame)

			Factored Strip Moment (k-ft)								
			Span AB		Span BC			Span CD			
Strip	Method	[−] M	+M	[−] M	[−] M	+M	[−] M	[−] M	+M	[−] M	
	DDM	86	92	161	130	56	130	143	85	71	
Column	MSM	122	83	157	130	56	130	140	72	117	
Strip	EFM	140	83	157	144	44	145	161	62	125	
	SAFE	69	85	159	128	58	121	138	72	88	
	DDM	6	62	54	43	37	43	48	57	0	
Middle Strip	MSM	10	55	52	43	37	43	46	48	0	
	EFM	10	55	53	48	29	48	54	41	0	
	SAFE	7	78	62	51	48	46	52	62	13	

COMPUTER FILE:

S08.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 9 ACI Handbook Two-Way Slab Example 2

PROBLEM DESCRIPTION

The two-way slab system arranged three-by-three is shown in Figure 9-1. The slab consists of nine 6.5-inch-thick 20-foot \times 24-foot panels. Beams extend 12 inches below the slab soffit. Details are shown in Figure 9-2. Sixteen inch \times 16 inch columns are used throughout the system. Floor to floor height is 15 feet. A full description of this problem is given in Example 2 of ACI 340.R-91 (ACI Committee 340, 1991). The total factored moments in an interior design frame obtained from SAFE are compared with the Direct Design Method, the Modified Stiffness Method, and the Equivalent Frame Method.

The computational model uses a 10×10 mesh of elements per panel, as shown in Figure 9-3. The mesh contains grid lines at both column centerlines and column faces. The grid lines are extended to the slab edges. The slab is modeled using plate elements. The columns are modeled as point supports with vertical and rotational stiffnesses. A stiffness coefficient of 4 *EI/L* is used in the calculation of support flexural stiffness. Torsional constants of 4790 in⁴ and 5478 in⁴ are defined for the edge and interior beams respectively, in accordance with Section 13.7.5 of ACI 318-89 and Section 13.0 of ACI 318-95 code. The model is analyzed for uniform factored total load of 0.347 ksf ($w_u = 1.4w_d + 1.7w_I$), including self weight. To obtain factored moments in an interior design frame, the slab is divided into strips in the X-direction (E-W direction), as shown in Figure 9-4. An interior design frame consists of one column strip and two halves of adjacent middle strips.

GEOMETRY, PROPERTIES AND LOADING

f_c '	=	3	ksi
f_y	=	40	ksi
W_c	=	150	psf
E_c	=	3120	ksi
v	=	0.2	
W1	=	125	psf
W_d	=	15	psf
W_{wall}	=	400	plf
	f_c' f_y W_c E_c V W1 Wd Wwall	$f_c' = f_y = g_{w_c} = g_{v_c} = g$	$f_{c}' = 3 f_{y} = 40 w_{c} = 150 E_{c} = 3120 v = 0.2 w_{I} = 125 w_{d} = 15 w_{wall} = 400 $

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 9-1 ACI Handbook Two-Way Slab Example

Software Verification

Figure 9-2 Details of Two-Way Slab Example from ACI Handbook

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 9-3 SAFE Mesh (10 × 10 per panel)

PROGRAM NAME:	SAFE
REVISION NO.:	0

Figure 9-4 Definition of E-W Design Frames and Strips

PROGRAM NAME: REVISION NO.: SAFE 0

PROGRAM NAME:	SAFE
REVISION NO.:	0

TECHNICAL FEATURES OF SAFE TESTED

Calculation of factored moments in slab.

RESULTS COMPARISON

The SAFE results for the total factored moments in an interior E-W design frame are compared with the results obtained by the Direct Design Method (DDM), the Modified Stiffness Method (MSM), and the Equivalent Frame Method (EFM) as shown in Figure 9-5. The results are for uniform loading with load factors. The results are reproduced from ACI Committee 340 (1991). Moments reported are calculated at the column face. For all practical purposes they compare well. At the end bays, the MSM appears to overestimate the exterior column negative moments with the consequent reduction in the mid-span moments.

The distribution of total factored moments to the beam, column strip, and middle strip is shown in Table 9-1. The middle strip moments compare well. The total column strip moments also compare well. The distribution of the column strip moments between the slab and the beam has a larger scatter.

PROGRAM NAME: REVISION NO.: SAFE 0

		Total Factored Moments in an E-W Design Frame(kip-ft)					kip-ft)	
		E	Exterior Spa	n	Interior Span			
Strip Method		[−] M	+M	^{-}M	−M	+M	[−] M	
Slab	DDM	9	23	28	25	14	25	
	MSM	13	21	28	25	14	25	
Strip	EFM	12	21	30	27	11	27	
	SAFE	22	27	62	58	14	58	
	DDM	3	69	84	76	41	76	
Slab	MSM	5	63	84	76	41	76	
Strip	EFM	4	63	89	82	34	82	
	SAFE	6	71	73	73	49	73	
	DDM	50	129	160	143	77	143	
Poom	MSM	72	121	160	143	77	143	
Dealli	EFM	68	119	169	156	66	156	
	SAFE	62	102	141	122	60	122	

Table 9-1 Comparison of Total Factored Moments (kip-ft)

COMPUTER FILE:

S09.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE 10 PCA Flat Plate Test

PROBLEM DESCRIPTION

This example models the flat plate structure tested by the Portland Cement Association (Guralnick and LaFraugh 1963). The structure consists of nine 5.25-inch-thick 15-foot \times 15-foot panels arranged 3×3 , as shown in Figure 10-1. Deep and shallow beams are used on the exterior edges. The structure is symmetric about the diagonal line through columns A1, B2, C3, and D4, except the columns themselves are not symmetric about this line. The corner columns are 12 inches \times 12 inches and the interior columns are 18 inches \times 18 inches. Columns along the edges are 12 inches \times 18 inches, with the longer dimension parallel to the plate edge. A typical section of the plate and details of edge beams are given in Figure 10-2. The total moments in an interior frame obtained numerically from SAFE are compared with the test results and the numerical values obtained by the Equivalent Frame Method (EFM).

A finite element model, shown in Figure 10-3, with 6×6 mesh per panel is employed in the analysis. The slab is modeled using the plate elements in SAFE. The columns are modeled as point supports with vertical and rotational stiffnesses. The reduced-height columns in the test structure are fixed at the base. Hence, rotational stiffnesses of point supports are calculated using a stiffness coefficient of 4 and an effective height of 39.75 inches ($K_c = 4EI / l_c$). In order to account for rigidity of the slab-column joint, the portion of slab occupying the column area is modeled as rigid by using a special stiff area element. A total uniformly distributed design load of 156 psf (not factored) is applied to all the panels.

To obtain design moment coefficients, the plate is divided into column and middle strips. An interior design frame consists of one column strip and half of each adjacent middle strip. Normalized values of design moments are used in the comparison.

SAFE

PROGRAM NAME: REVISION NO.:

Figure 10-1 PCA Flat Plate Example

Figure 10-2 Section and Details of PCA Flat Plate Example

Figure 10-3 SAFE Mesh (6 × 6 per panel)

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Concrete strength	f_c '	=	4.1	ksi
Yield strength of steel	f_y	=	40	ksi
Concrete unit weight	W_c	=	150	pcf
Modulus of elasticity	E_c	=	3670	ksi
Poisson's ratio	v	=	0.2	
Poisson's ratio	V	=	0.2	
Poisson's ratio Live load	v w1	=	0.2 70	psf

TECHNICAL FEATURES OF SAFE TESTED

Calculation of factored forces in slab.

RESULTS COMPARISON

The SAFE results for the total non-factored moments in an interior frame are compared with test results and the Equivalent Frame Method (EFM). The test and EFM results are all obtained from Corley and Jirsa (1970). The moments are compared in Table 10-1. The negative design moments reported are at the faces of the columns. Overall, the agreement between the SAFE and EFM results is good. The experimental negative moments at exterior sections, however, are comparatively lower. This may be partially the result of a general reduction of stiffness due to cracking in the beam and column connection at the exterior column, which is not accounted for in an elastic analysis. It is interesting to note that even with an approximate representation of the column flexural stiffness, the comparison of negative exterior moments between EFM and SAFE is excellent.

PROGRAM NAME:	SAFE
REVISION NO.:	0

	Moments in an Interior Design Frame (M/WI1*)								
	End Span (Shallow Beam Side)			Middle Span			End Span (Deep Beam Side)		
Method	[−] M	+M	−M	[−] M	+M	−M	[−] M	+M	−M
PCA Test	0.037	0.047	0.068	0.068	0.031	0.073	0.073	0.042	0.031
EFM	0.044	0.048	0.067	0.062	0.038	0.062	0.068	0.049	0.043
SAFE (Shallow Beam Slide)	0.040	0.051	0.069	0.062	0.041	0.062	0.068	0.052	0.039
SAFE (Deep Beam Slide)	0.040	0.051	0.068	0.062	0.041	0.062	0.068	0.052	0.039

Table 10-1 Comparison of Measured and Computer Moments

* *Wl*₁ = 526.5 *kip-ft*

COMPUTER FILE:

S10.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 11 University of Illinois Flat Plate Test F1

PROBLEM DESCRIPTION

This example models the flat plate structure tested at the University of Illinois by Hatcher, Sozen, and Siess (1965). The structure consists of nine 1.75-inch-thick 5-foot \times 5-foot panels arranged 3 \times 3 as shown in Figure 11-1. Two adjacent edges are supported by 2.00-inch-wide \times 5.25-inch-deep beams and the other two edges by shallow beams, 4 inches wide by 2.75 inches deep, producing a single diagonal line of symmetry through columns A1, B2, C3, and D4. A typical section and details of columns and edge beams are shown in Figure 11-2. The moments computed numerically using SAFE are compared with the test results and the EFM results.

The computational model uses a 6×6 mesh of elements per panel, as shown in Figure 11-3. The mesh contains grid lines at column centerlines as well as column faces. The slab is modeled using slab area elements and the columns are modeled as point supports with vertical and rotational stiffnesses. The reduced-height columns in the test structure are pinned at the base. Hence, an approximate value of $3(K_c = 3EI/l_c)$ is used to calculate flexural stiffness of the supports, taking the column height as 9.5 inches. In order to account for rigidity of the slab-column joint, the portion of slab occupying the column area is modeled as rigid by using a special stiff area element. Shallow and deep beams are defined on the edges with properties derived from cross-section geometry. The model is analyzed for uniform total load of 140 psf.

To obtain maximum factored moments in an interior design frame, the plate is divided into columns and middle strips. An interior design frame consists of one column strip and half of each adjacent middle strip.

GEOMETRY, PROPERTIES AND LOADING

Material:				
Concrete strength	f'_c	=	2.5	ksi
Yield strength of steel	f_y	=	36.7	ksi
Modulus of elasticity	E_c	=	2400	ksi
Poisson's ratio	V	=	0.2	
Loading:				
Total uniform load	W	=	140	psf

0

PROGRAM NAME: **REVISION NO.:**

Figure 11-1 University of Illinois Flat Plate Test F1

PROGRAM NAME: SAFE REVISION NO.: 0

Figure 11-2 Sections and Details of University of Illinois Flat Plate Test F1

Figure 11-3 SAFE Mesh (6 × 6 per panel)

PROGRAM NAME: REVISION NO.:

•••••	000
SAFE	
)	

TECHNICAL FEATURES OF SAFE TESTED

Calculation frame moments for uniform loading.

RESULTS COMPARISON

Table 11-1 shows the comparison of the SAFE results for uniform load moments for an interior frame with the experimental and EFM results. The experimental and EFM results are all obtained from Corley and Jirsa (1970).

Table 11-1 Comparison of Measured and Computed Moments

		Moments in an Interior Design Frame (<i>M/WI</i> ¹ *)								
	End Span (Shallow Beam Side)			Middle Span			End Span (Deep Beam Side)			
Method	-M	+M	-M -M +M -M			-M	⁻ M	+M	[−] M	
TEST F1	0.027	0.049	0.065	0.064	0.040	0.058	0.058	0.047	0.034	
EFM	0.047	0.044	0.072	0.066	0.034	0.067	0.073	0.044	0.046	
SAFE (Shallow Beam Side)	0.044	0.047	0.066	0.060	0.039	0.059	0.065	0.048	0.043	
SAFE (Deep Beam Side)	0.043	0.047	0.064	0.059	0.039	0.058	0.064	0.047	0.042	

* $Wl_1 = 17.5$ kip-ft

The negative design moments reported are at the faces of the columns. From a practical standpoint, even with a coarse mesh, the agreement between the SAFE and EFM results is good. In general the experimentally obtained moments at exterior sections are low, implying a loss of stiffness in the beam-column joint area.

In comparing absolute moments at a section, the sum of positive and average negative moments in the bay should add up to the total static moment. The SAFE and EFM results comply with this requirement within an acceptable margin of accuracy. The experimental results are expected to show greater discrepancy because of the difficulty in taking accurate strain measurements.

COMPUTER FILE: S11.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 12 University of Illinois Flat Slab Tests F2 and F3

PROBLEM DESCRIPTION

This example models F2 and F3, the flat slab structures tested at the University of Illinois by Hatcher, Sozen, and Siess (1969) and Jirsa, Sozen, and Siess (1966) respectively. A typical structure used in tests F2 and F3 is shown in Figure 12-1. The fundamental difference between these two test structures is in the type of reinforcement used. In test F2, the slab is reinforced with medium grade reinforcement, whereas in test F3, welded wire fabrics are used. The structure consists of nine 5-foot \times 5-foot panels arranged 3×3 . Two adjacent edges are supported by deep beams, 2 inches wide by 6 inches deep, and the other two edges by shallow beams, 4.5 inches wide by 2.5 inches deep, producing a single diagonal line of symmetry through columns A1, B2, C3, and D4. A typical section and details of columns, drop panels, and column capitals are shown in Figure 12-2. For both structures, the numerical results obtained for an interior frame by SAFE are compared with the experimental results and the EFM results due to uniformly distributed load.

The computational model uses an 8×8 mesh of elements per panel, as shown in Figure 12-3. The mesh contains grid lines at the column centerlines as well as the edges of drop panels and interior column capitals. The slab thickness is increased to 2.5 inches over the drop panels. A thickness of 4.5 inches is used to approximately model the interior capitals. Short deep beams are used to model the edge column capitals. In this model, the slab is modeled using plate elements and the columns are modeled as point supports with vertical and rotational stiffnesses. A stiffness coefficient of 4.91 ($K_c = 4.91EI_c / l_c$) is used in the calculation of the support flexural stiffness based on a column height of 21.375 inches, measured from the mid-depth of the slab to the support center. Due to the presence of capitals, columns are treated as non-prismatic. Shallow and deep beams are defined on the edges with properties derived from their cross-section geometry.

The test problems use two different concrete moduli of elasticity, $E_c = 2100$ ksi and $E_c = 3700$ ksi for the beams and slab. However, both test problems are modeled in SAFE with concrete modulus of elasticity of 2100 ksi. This affects the slab, beam, and column stiffness since the distribution of moment depends on the relative stiffness.

0

PROGRAM NAME: REVISION NO.:

SAFE

Figure 12-1 University of Illinois Flat Slab Tests F2 and F3

The model is analyzed for uniform load. To obtain maximum factored moments in an interior design frame, the slab is divided into two interior and two exterior design frames spanning in the X direction (E-W direction). Because of symmetry, results are shown for X strips only. An interior design frame consists of one column strip and half of each adjacent middle strip.

21⁄2"

Software Verification SAFE PROGRAM NAME: **REVISION NO.:** 0 B (D С 5'-0" -5'-0" 5'-0" \$hallow Beam Deep Beam L13⁄4" 1'-10¼" Side Column **Corner Column Interior Column** 3½" x 5" 3¾" sq. 31⁄2" sq. **SECTION A-A** -20"-12"-<u>0.5</u>" 1.75" Drop panel Capital 22.25" 1_c = 17.375"

INTERIOR COLUMNS

Figure 12-2 Sections and Details of Flat Slabs F2 and F3

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 12-3 SAFE Mesh (8 × 8 per mesh)

GEOMETRY, PROPERTIES AND LOADING

Concrete strength:

$$f_c' = 2.76$$
 ksi (Test F2)
 $f_c' = 3.76$ ksi (Test F3)

Yield strength of slab reinforcement:

 $f_y = 49$ ksi (Test F2) $f_y = 54$ ksi (Test F3)

PROGRAM NAME:	SAFE
REVISION NO.:	0

Modulus of elasticity:

 $E_c = 2100 \text{ ksi}$ (Test F2) $E_c = 3700 \text{ ksi}$ (Test F3)

Poisson's ratio:

 $\nu=~0.2$

Loading:

Total uniform design load, w = 280 psf

TECHNICAL FEATURES OF SAFE TESTED

Calculation frame moments.

RESULTS COMPARISON

Table 12-1 shows the comparison of the SAFE results for moments in an interior frame with the experimental and EFM results for both structures F2 and F3. The experimental and EFM results are all obtained from Corley and Jirsa (1970).

Table 1	2-1	Comparis	son of M	Measured	and C	Computer	Moments

	Moments in an Interior Design Frame (<i>M / WI</i> ¹ *)								
	E (Shallo	End Spar ow Bearr	n N Side)	Middle Span			End Span (Deep Beam Side)		
Method	-M	-M +M -M -M +M -M			−M	+M	-M		
TEST F2	0.025	0.042	0.068	0.062	0.029	0.061	0.065	0.038	0.025
TEST F3	0.029	0.038	0.057	0.055	0.023	0.058	0.060	0.034	0.024
EFM	0.021	0.044	0.057	0.050	0.026	0.049	0.057	0.044	0.021
SAFE (Shallow Beam Side)	0.026	0.042	0.067	0.058	0.025	0.057	0.066	0.042	0.024
SAFE (Deep Beam Side)	0.026	0.041	0.066	0.057	0.024	0.057	0.066	0.042	0.024

* $WI_1 = 35.0 \ k$ -ft

PROGRAM NAME: REVISION NO.: SAFE 0

Moments are compared at the edge of column capitals. Table 12-1 shows that the SAFE and the EFM results are in excellent agreement. In general, the measured positive moments appear to be lower than the SAFE and EFM values.

COMPUTER FILE: S12.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 13 University of Illinois Two-Way Slab Test T1

PROBLEM DESCRIPTION

This example models the slab structure tested at the University of Illinois by Gamble, Sozen, and Siess (1969). The structure is a two-way slab, 1.5 inches thick, in which each panel is supported along all four edges by beams, as shown in Figure 13-1. The structure consists of nine 5-foot \times 5-foot panels arranged 3 \times 3. The edge beams extend 2.75 inches below the soffit of the slab and the interior beams have an overall depth of 5 inches. The corner columns are 4 inches \times 4 inches and the interior columns are 6 inches \times 6 inches. Edge columns are 4 inches \times 6 inches with the longer dimension parallel to the slab edge. A typical section of the slab and details are shown in Figure 13-2. The moments in an interior design frame due to uniform loads obtained from SAFE are compared with the corresponding experimental results and the numerical values obtained from the EFM.

The computational model uses a 6×6 mesh of elements per panel, as shown in Figure 13-3. Grid lines are defined at column faces as well as the column centerlines. The slab is modeled using the plate elements available in SAFE. The columns are modeled as supports with both vertical and rotational stiffnesses. A stiffness coefficient of 8.0 is used in the calculation of support flexural stiffnesses based on a column height of 15.875 inches, measured from the mid-depth of the slab to the support center. The column is assumed to be infinitely rigid over the full depth of the beams framing into it. The value of 8.0 is 75% of the figure obtained from Table 6.2 of ACI Committee 340 (1997) to approximately account for the pinned end condition at the column base. In order to account for rigidity of the slab-column joint, the portion of slab occupying the column area is modeled as rigid by using a special stiff area element. Edge beam properties are derived from their cross-section geometries.

To obtain maximum factored moments in an interior design frame, the slab is divided into two interior and two exterior design frames spanning in the X direction (E-W direction). Because of double symmetry, comparison is confined to X strips only. An interior design frame consists of one column strip and half of each adjacent middle strip.

PROGRAM NAME: REVISION NO.:

Figure 13-1 University of Illinois Two-Way Slab Example T1

GEOMETRY, PROPERTIES AND LOADING

Concrete strength	f_c '	=	3	ksi
Yield strength of reinforcements	f_y	=	42	ksi
Modulus of elasticity	E_c	=	3000	ksi
Poisson's ratio	ν	=	0.2	
Loading: Total uniform load	w	=	150	psf

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

Figure 13-2 Sections and Details of Slab T1

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 13-3 SAFE Mesh of Slab T1 (6 × 6 per panel)

TECHNICAL FEATURES OF SAFE TESTED

Calculation frame moments and comparison with experimental and FEM results.

RESULTS COMPARISON

Table 13.-1 shows the comparison of the moments in an interior design frame obtained numerically from SAFE with the experimental results and the EFM results. The experimental and EFM results are all obtained from Corley and Jirsa (1970).

PROGRAM NAME:	SAFE
REVISION NO.:	0

	Moments in an Interior Design Frame (<i>M / WI</i> 1 *)							
	E	Middle Spar	า					
Method	-M	⁺M	−M	-M	⁺M	-M		
Test T1	0.043	0.046	0.079	0.071	0.036	0.071		
EFM	0.035	0.047	0.079	0.066	0.034	0.066		
SAFE	0.044	0.049	0.071	0.061	0.041	0.061		

Table 13-1 Comparison of Measured and Computer Moments

* $WI_1 = 18.75 \ k$ -ft

The negative design moments reported are at the face of columns. The comparison is excellent. The minor discrepancy is attributed to the loss of stiffness due to the development of cracks and the difficulty in measuring strains accurately at desired locations.

COMPUTER FILE: S13.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 14 University of Illinois Two-Way Slab Test T2

PROBLEM DESCRIPTION

This example models the slab structure tested at the University of Illinois by Vanderbilt, Sozen, and Siess (1969). The structure is a two-way slab arranged in 3×3 panels in which each panel is supported along all four edges by beams, as shown in Figure 14-1. The structure consists of nine 1.5-inch thick 5-foot \times 5-foot panels. The edge beams and the interior beams extend 1.5 inches below the soffit of the slab. The corner columns are 4 inches \times 4 inches and the interior columns are 6 inches \times 6 inches. Edge columns are 4 inches \times 6 inches with the longer dimension parallel to the slab edge. A typical section of the slab and details is shown in Figure 14-2.

The computational model uses a 6×6 mesh of elements per panel, as shown in Figure 14-3. Grid lines are defined at column faces as well as the column centerlines. The slab is modeled using plate elements and the columns are modeled as supports with both vertical and rotational stiffnesses. A stiffness coefficient of 6.33 is used in the calculation of support flexural stiffnesses based on a column height of 13.125 inches, measured from the mid-depth of the slab to the support center. The column stiffness is assumed to be infinitely rigid over the full depth of the beams framing into it. The value of 6.33 is 75% of the figure obtained from Table A7 of Portland Cement Association (1990) to approximately account for the pinned end condition at the column base. In order to account for rigidity of the slab-column joint, the portion of slab occupying the column area is modeled as rigid by using a special stiff area element. Edge beam properties are derived from their cross-section geometries.

To obtain maximum factored moments in an interior design frame, the slab is divided into two interior and two exterior design frames spanning in the X direction (E-W direction). An interior design frame consists of one column strip and half of each adjacent middle strip.

GEOMETRY, PROPERTIES AND LOADING

Concrete strength	f_c '	=	3	ksi
Yield strength of reinforcement	f_y	=	47.6	ksi
Modulus of elasticity	E_c	=	3000	ksi
Poisson's ratio	ν	=	0.2	
Loading: Total uniform load	W	=	139	psf

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Figure 14-1 University of Illinois Two-Way Floor Slab T2

Software Verification

PROGRAM NAME: SAFE REVISION NO.: 0

Figure 14-2 Sections and Details of Floor Slab T2

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 14-3 SAFE Mesh of Slab T2 (6 × 6 per panel)

TECHNICAL FEATURES OF SAFE TESTED

Calculation of frame forces and comparison with experimental and FEM results.

RESULTS COMPARISON

Table 14-1 shows the comparison of the moments in an interior design frame obtained numerically from SAFE with the experimental results and the EFM results. The experimental and EFM results are all obtained from Corley and Jirsa (1970).

PROGRAM NAME:	SAFE
REVISION NO.:	0

	Moments in an Interior Design Frame $(M / W I_1 *)$					
	Exterior Span			Middle Spar	1	
Method	[−] M	+M	^{-}M	$^{-}M^{-}$	+M	^{-}M
TEST T1	0.036	0.056	0.069	0.061	0.045	0.061
EFM	0.046	0.044	0.074	0.066	0.034	0.066
SAFE	0.046	0.047	0.067	0.060	0.039	0.060

Table 14-1 Comparison of Measured and Computer Moments

* WI₁ = 17.375 kip-ft

The negative design moments reported are at the face of columns. The comparison is excellent except for the negative exterior moments where the experimental results are lower than both the SAFE and the EFM results. The discrepancy is attributed not only to the loss of stiffness due to the development of cracks, but also to the difficulty in taking accurate strain measurements at desired locations.

COMPUTER FILE: S14.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 15

Temperature Loading

PROBLEM DESCRIPTION

In SAFE, two types of temperature loads can be applied to slab elements: an overall change in temperature or a temperature gradient across the slab thickness. This example tests each of these temperature loading methods using a 10-inch-deep x 12-inch-wide concrete slab. The slab is restrained in four different ways, and different temperature loads are applied and analyzed using SAFE. The results are compared to hand calculations and summarized in Table 15-1.

Temp, T1 = 100 degrees, F, Temp, T2 = 0 degrees, F, Span = 24 ft

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 1 One-Way Slab

GEOMETRY, PROPERTIES AND LOADING

Slab thickness	h	=	10	in
Slab width	b	=	12	in
Clear span	L	=	288	in
Concrete strength	f_c'	=	4,000	psi
Modulus of elasticity	E_c	=	3,605	ksi
Poisson's ratio	ν	=	0.001	
Temp, T1	T1	=	100	degrees, F
Temp, T2	<i>T</i> 2	=	0	degrees, F

TECHNICAL FEATURES OF SAFE TESTED

> Temperature and Temperature Gradient Loading

RESULTS COMPARISON

The force, reaction, or displacements are found using the SAFE program for the cases described previously. The SAFE values were then compared to the independent hand calculations and summarized in Table 15-1.

PROGRAM NAME:	SAFE
REVISION NO.:	0

Table 15-1 Comparison of Results

CASE AND FEATURE TESTED	INDEPENDEN T RESULTS	SAFE RESULTS	DIFFEREN CE
Case 1, Force, F11 (k/ft)	237.93	237.95	0.01%
Case 2, Reaction, RB (k)	1.033	1.032	0.09%
Case 3, Mid-Span Deflection, (in)	0.570	0.570	0.00%
Case 4, Free-End Displacement, (in)	-2.281	-2.281	0.00%

COMPUTER FILES: S15a.FDB, S15b.FDB, S15c.FDB, S15d.FDB

CONCLUSION

The SAFE results show an exact or nearly exact comparison with the independent hand-calculated results.

COMMENT

In Case 4, a stiffness modifier of 100 for V13 and V23 is used to avoid shear deformation in plate.

The vertical offset of a slab can have a significant effect on the thermal loading results. Therefore, it is recommended that users turn <u>off</u> the option to ignore the vertical offsets when temperature loading is considered in a model (see the **Run menu > Ignore Vertical Offsets in Non P/T Models** command).

PROGRAM NAME: REVISION NO.: SAFE 0

CALCULATIONS:

Design Parameters: T1 = 100, T2 = 0, h= 10, L = 24 ft (288 in), b = 36, $\varepsilon = 5.5$ E-06

Case 1:

Slab Force, $F11 = \varepsilon tAE = 0.0000055(100)(10 \times 12)(3605) = 237.93 \text{ k/ft}$

Case 2:

Reaction,
$$RB = \frac{3EI\varepsilon}{2hL^3} (T2 - T1)L^2 = \frac{3EI\varepsilon}{2hL} (T2 - T1)$$
 From Roark and Young, p. 107
= $\frac{3(3605)(1000)(0.0000055)}{2(10)(288)} (100) = 1.033$ kips

Case 3:

Deflection,
$$Z = \frac{-\varepsilon}{8h} (T2 - T1) L^2 = \frac{-0.0000055}{8(10)} (-100) (288)^2 = 0.5702 \text{ in}$$
 Roark..., p. 108

Case 4:

Deflection,
$$Z = \frac{-\varepsilon}{2h} (T2 - T1) L^2 = \frac{-0.0000055}{2(10)} (-100) (288)^2 = 2.281 \text{ in}$$
 Roark..., p. 108

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 16 Cracked Slab Analysis

CRACKED ANALYSIS METHOD

The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, Ψ_1 State 1, and, Ψ_2 State 2, for a reinforced beam or slab. Plot A-B-C-D shows the theoretical moment versus curvature of a slab or beam. The slope of the moment curvature between points A and B remains linearly elastic until the cracking moment, Mr, is reached. The increase in moment curvature between B-C at the cracking moment, Mr, accounts for the introduction of cracks to the member cross-section. The slope of the moment curvature between point C-D approaches that of the fully cracked condition, Ψ_2 State 2, as the moment increases.

Since the moments vary along the span of a slab or beam, it is generally not accurate to assign the same cracked section effective moment of inertia along the entire length of a span. A better approach and the one recently added to the SAFE program is to account for the proper amount of curvature for each distinct finite element of the slab or beam that corresponds to the amount of moment being applied to that element. After the moment curvatures are known for each element, the deflections can be calculated accordingly.

This verification example will compare the results from Example 8.4, *Concrete Structures, Stresses and Deformations, Third Edition, A Ghali, R Favre and M Elbadry, pages 285-289*, with the results obtained from SAFE. Both the calculations and the SAFE analysis use the cracked analysis methodology described in the preceding paragraphs.

PROBLEM DESCRIPTION

The slab used in this example has dimensions b = 0.3 m and h = 0.6 m. The slab spans 8.0 m and has an applied load of 17.1 KN/m.

Curvature, 🖉

Figure 16-1 Moment versus curvature for a reinforced slab member

Figure 16-2 One-Way Slab

PROGRAM NAME:	SAFE
REVISION NO.:	0

GEOMETRY, PROPERTIES AND LOADING

Slab thickness	h	=	0.65	m
Slab width	b	=	0.3	m
Clear span	L	=	8.0	m
Concrete Ultimate Strength h	f_c'	=	30	MPa
Concrete cracking strength	f_{cr}	=	2.5	MPa
Modulus of elasticity, Conc.	E_s	=	30	GPa
Modulus of elasticity, Steel	E_c	=	200	GPa
Poisson's ratio	ν	=	0.2	
Uniform load	W	=	17.1	KN/m
Creep coefficient φ	$P(t,t_0)$	=	2.5	
Free shrinkage ε_{cs}	(t,t_0)	= -	-250E-6	

Note: The concrete cracking strength of $f_{cr} = 2.5$ MPa was used in this example using the **Run menu > Cracking Analysis Option** command.

TECHNICAL FEATURES OF SAFE TESTED

Cracked Slab Analysis

RESULTS COMPARISON

SAFE calculated the displacements using a Nonlinear Cracked Load Case (see Figure 16-1). The first nonlinear load case was calculated without creep and shrinkage effects and the second nonlinear load case included creep and shrinkage effects. Table 16-1 shows the results obtained from SAFE compared with the referenced example.

Table 16-1	Comparison	of Results
------------	------------	------------

CASE AND FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERE NCE
Mid-Span Displacement No Creep / Shrinkage (m)	14.4 mm	13.55 mm	5.90%
Mid-Span Displacement with Creep / Shrinkage (m)	23.9 mm	24.51 mm	2.51%

PROGRAM NAME: REVISION NO.: SAFE 0

COMPUTER FILES: S16.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

CALCULATIONS:

Design Parameters: 1

 $E_s = 200 \text{ GPa}, E_c = 30 \text{ GPa}, h = 0.65 \text{ m}, b = 0.3 \text{m},$ $A_s = 1080 \text{ mm}^2, A_s' = 270 \text{ mm}^2,$ Center of reinf. at 0.05 m Span = 8.0 m, Uniform Load = 17.1 KN/m

Figure 16-3 Slab Cross-Section

- Case 1 Nonlinear cracked slab analysis without creep and shrinkage
 - 1.1 Transformed Uncracked Section Properties: Area, $A = 0.2027m^2$ Y = 0.319m*I*, transformed = 7.436E-03 m⁴
 - 1.2 Transformed Cracked Section Properties: Area, $A = 0.2027 \text{ m}^2$ C = 0.145 m*I*, cracked = 1.809E-03 m⁴

PROGRAM NAME:	SAFE
REVISION NO.:	0

1.3 Cracked Bending Moment, $Mr = 23.3E-03 \times 2.5 \times 10E6 = 58.3$ KN-m

1.4 Interpolation coefficient, $\zeta = 1 - \beta_1 \beta_2 \left(\frac{M_r}{M}\right)^2 = 1 - 1.0 \left(\frac{58.3}{136}\right)^2 = 0.82$ where $\beta_1 = 1.0$ and $\beta_2 = 1.0$

1.5 Curvature:

State 1: Uncracked $\Psi_1 = \frac{136E-06}{30 \times 10^9 \times 7.436E-03} = 610E-06/m$

State2: Fully Cracked

$$\Psi_2 = \frac{136E-06}{30 \times 10^9 \times 1.809E-03} = 2506E-06/m$$

Interpolated curvature:

$$\Psi_{\rm m} = (1 - \zeta)\Psi_1 + \zeta(\Psi_2) = (1 - 0.82)(610\text{E}-06/\text{m}) + 0.82(2506\text{E}-06) = 2157\text{E}-06/\text{m}$$

1.6 Slab Curvature:

Figure 16-4 Span-Curvature Diagram

1.7 Deflection:

By assuming a parabolic distribution of curvature across the entire span (see the Mean Curvature over Entire Span plot in Figure 16-4), the deflection can be calculated as,

PROGRAM NAME: REVISION NO.: SAFE 0

Deflection =
$$0.002157 \frac{8^2}{96} \times 10 \times 1000 = 14.4 \text{ mm}$$
 (See Table 16-1)

Case 2 - Nonlinear cracked slab analysis with creep and shrinkage

2.1 Aged adjusted concrete modulus,

$$\overline{E}_{C}(t,t_{0}) = \frac{E_{C}(t_{0})}{1 + X\varphi(t,t_{0})} = \frac{30e9}{1 + 0.8(2.5)} = 10$$
GPa

Where $X(t,t_0) = 0.8$ (SAFE Program Default), $\varphi(t,t_0) = 2.5$ (aging coefficient, see Figure 16-5 below)

$$n = \frac{E_s}{\overline{E}_c(t, t_0)} = \frac{200}{10} = 20$$

- 2.2 Age-adjusted transformed section in State1: $\overline{A}_1 = 0.2207 \text{ m}^2$ NA = 0.344 m from top of slab $\overline{I}_1 = 8.724 \times 10^{-3} \text{ m}^4$ $y_c = -0.020 \text{ m}$, distance from top of slab to the centroid of the concrete area $A_c = 0.1937 \text{ m}^2$, area of concrete $I_c = 6.937 \times 10^{-3} \text{ m}^4$, moment of inertia of A_c about NA $r_c^2 = \frac{I_c}{A_c} = 35.34 \times 10^{-3} \text{ m}^2$ $\kappa_1 = \frac{I_c}{\overline{I}} = \frac{6.937 \times 10^{-3}}{8.724 \times 10^{-3}} = 0.795$, curvature reduction factor
- 2.3 Age adjusted transformed section in State2:

 $\overline{A}_2 = 0.0701 \text{ m}^2$ NA = 0.233 m from top of slab $\overline{I}_2 = 4.277 \times 10^{-3} \text{ m}^4$ $y_c = -0.161 \text{ m, distance from top of slab to the centroid of the concrete area}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

 $A_{C} = 0.0431 \text{ m}^{2}, \text{ area of concrete}$ $I_{C} = 1.190 \times 10^{-3} \text{ m}^{4}, \text{ moment of inertia of } A_{C} \text{ about NA}$ $r_{C}^{2} = \frac{I_{C}}{A_{C}} = 27.62 \times 10^{-3} \text{ m}^{2}$ $\kappa_{2} = \frac{I_{C}}{\overline{I}} = \frac{1.190 \times 10^{-3}}{4.277 \times 10^{-3}} = 0.278$

2.4 Changes in curvature due to creep and shrinkage:

State 1, Change in curvature between period t_0 to t,

$$Delta\psi = \kappa \left[\varphi(t,t_0) \left(\psi(t_0) + \varepsilon_0(t_0) \frac{y_C}{r_C^2} \right) + \varepsilon_{CS}(t,t_0) \varepsilon \frac{y_C}{r_C^2} \right]$$

= 0.795 $\left[2.5 \left(610 \times 10^{-6} + 8 \times 10^{-6} \frac{-0.020}{35.34 \times 10^{-3}} \right) + \left(-250 \times 10^{-6} \right) \frac{-0.020}{35.34 \times 10^{-3}} \right]$
= 1299 × 10⁻⁶ / m

The curvature at time *t* (State 1) $\Psi_1(t) = (610+1299) \times 10^{-6} / m = 1909 \times 10^{-6} / m$

State 2, Change in curvature between period t_0 to t,

$$Delta\psi = \kappa \left[\varphi(t, t_0) \left(\psi(t_0) + \varepsilon_0(t_0) \frac{y_C}{r_C^2} \right) + \varepsilon_{CS}(t, t_0) \varepsilon \frac{y_C}{r_C^2} \right]$$
$$= 0.278 \left[2.5 \left(2506 \times 10^{-6} + 222 \times 10^{-6} \frac{-0.161}{27.62 \times 10^{-3}} \right) + \left(-250 \times 10^{-6} \right) \frac{-0.161}{27.62 \times 10^{-3}} \right]$$
$$= 1248 \times 10^{-6} / \mathrm{m}$$

The curvature at time t (State 2) $\Psi_2(t) = (2506 + 1248) \times 10^{-6} / \text{m} = 3754 \times 10^{-6} / \text{m}$

Interpolated curvature:

$$\boldsymbol{\Psi}_{t} = (1 - \boldsymbol{\zeta})\boldsymbol{\Psi}_{1}(t) + \boldsymbol{\zeta}(\boldsymbol{\Psi}_{2}(t)) = (1 - 0.91)(1909 \times 10^{-6}) + 0.91(3754 \times 10^{-6}) = 3584 \times 10^{-6} / \mathrm{m}$$

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.:

2.5 Deflection at center at time, *t*:By assuming a parabolic distribution of curvature across the entire span, the deflection can be calculated as,

Deflection =
$$0.003584 \frac{8^2}{96} \times 10 \times 1000 = 23.90 \text{ mm}$$
 (See Table 16-1)

2.6 The *Load Case Data* form for Nonlinear Long-Term Cracked Analysis: The Creep Coefficient and Shrinkage Strain values must be user defined. For this example, a shrinkage strain value of -250E-6 was used. Note that the value is input as a positive value.

Load Case Name	Load Case Data Notes	Load Case Type			
CRACKED_CS	Modify/Show Notes	Static	Design		
Initial Conditions		Analysis Type			
 Zero Initial Conditions - Start from 	om Unstressed State	🔘 Linear			
Continue from State at End of N	Nonlinear Case	🔘 Nonlinear (Allow Uplift)	 Nonlinear (Allow Uplift) 		
		 Nonlinear (Cracked) Nonlinear (Long Term Cracked) 			
Important Note: Loads from '	this previous case are included in the current				
case		Creep Coefficient	2.5		
		Shrinkage Strain	0.00025		
Load Name DEAD *	Scale Factor 1.				

Figure 16-5 Load Case Data form for Nonlinear Long-Term Cracked Analysis

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE 17 Crack Width Analysis

The crack width, w_k , is calculated using the methodology described in the Eurocode EN 1992-1-1:2004, Section 7.3.4, which makes use of the following expressions:

(1)
$$w_k = s_{r,\max}(\varepsilon_{sm} - \varepsilon_{cm})$$
 (eq. 7.8)

where

 $s_{r,\max}$ is the maximum crack spacing

- ε_{sm} is the mean strain in the reinforcement under the relevant combination of loads, including the effect of imposed deformations and taking into account the effects of tension stiffening. Only the additional tensile strain beyond the state of zero strain of the concrete at the same level is considered.
- ε_{cm} is the mean strain in the concrete between cracks
- (2) $\varepsilon_{sm} \varepsilon_{cm}$ may be calculated from the expression

$$\varepsilon_{sm} - \varepsilon_{cm} = E \frac{\sigma_s - k_t \frac{f_{ct,eff}}{\rho_{p,eff}} \left(1 + \alpha_e \rho_{p,eff}\right)}{E_s} \ge 0.6 \frac{\sigma_s}{E_s}$$
(eq. 7.9)

where

- σ_s is the stress in the tension reinforcement assuming a cracked section. For pretensioned members, σ_s may be replaced by $\Delta \sigma_s$, the stress variation in prestressing tendons from the state of zero strain of the concrete at the same level.
- α_e is the ratio E_c/E_{cm}

 $\rho_{p,eff}$ is $A_s / A_{c,eff}$

 $A_{p'}$ and $A_{c,eff}$; $A_{p'}$ is the area of tendons within $A_{c,eff}$, and $A_{c,eff}$ is the area of tension concrete surrounding the reinforcing.

PROGRAM NAME: REVISION NO.:

Chincati	
SAFE	
0	

- k_t is a factor dependent on the duration of the load $k_t = 0.6$ for short term loading $k_t = 0.4$ for long-term loading
- In situations where bonded reinforcement is fixed at reasonably close (3) centers within the tension zone [spacing $\leq 5(c + \phi / 2)$], the maximum final crack spacing may be calculated from

$$s_{r,\text{max}} = k_3 c + k_1 k_2 k_4 \phi / \rho_{p,\text{eff}}$$
 (eq. 7.11)

where

is the bar diameter. Where a mixture of bar diameters is used in a section, an equivalent diameter, ϕ_{eq} , should be used. For a section with n_1 bars of diameter ϕ_1 and n_2 bars of diameter ϕ_2 , the following equation should be used:

$$\phi_{eq} = \frac{n_1 \phi_1^2 + n_2 \phi_2^2}{n_1 \phi_1 + n_2 \phi_2}$$
(eq. 7.12)

where

- is the cover to the longitudinal reinforcement С
- k_1 is a coefficient that takes into account the bond properties of the bonded reinforcement:
 - = 0.8 for high bond bars
 - = 1.6 for bars with an effectively plain surface (e.g., prestressing tendons)
- k_2 is a coefficient that takes into account the distribution of strain:
 - = 0.5 for bending
 - = 1.0 for pure tension
- k_3 and k_4 are recommended as 3.4 and 0.425 respectively. See the National Annex for more information.

For cases of eccentric tension or for local areas, intermediate values of k₂ should be used that may be calculated from the relation:

$$k_2 = (\varepsilon_1 + \varepsilon_2) / 2\varepsilon_1 \qquad (eq. 7.13)$$

where ε_1 is the greater and ε_2 is the lesser tensile strain at the boundaries of the section considered, assessed on the basis of a cracked section.

PROGRAM NAME:	SAFE
REVISION NO.:	0

PROBLEM DESCRIPTION

The purpose of this example is to verify that the crack width calculation performed by SAFE is consistent with the methodology described above. Hand calculations using the Eurocode EN 1992-1-1:2004, Section 7.3.4 are shown below as well as a comparison of the SAFE and hand calculated results.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9,754 mm, as shown in Figure 17-1, and is the same slab used to validate the Eurocode PT design (see design verification example *Eurocode 2-04 PT-SL-001*). To test the crack width calculation, seven #5 longitudinal bars have been added to the slab. The total area of mild steel reinforcement is 1,400mm². Currently, SAFE will account for some of the PT effects. SAFE accounts for the PT effects on the moments and reinforcing stresses but the tendon areas are not considered effective to resist cracking.

Figure 17-1 One-Way Slab

PROGRAM NAME: REVISION NO.:

enneau	l
SAFE	
0	

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², was added to the A-Strip. The loads are as follows:

Loads: Dead = self weight

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	fpu	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	W_c	=	23.56	KN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

Calculation of the reported crack widths.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE crack widths to those calculated by hand.

PROGRAM NAME:	SAFE
REVISION NO.:	0

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Crack Widths (mm)	0.151mm	0.161mm	6.62%

COMPUTER FILE: S17.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.: SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

Dead, self-wt = $0.254 \text{ m x} 23.56 \text{ kN/m}^3$ = 5.984 kN/m^2 (D)

 $\omega = 5.984 \text{ kN/m}^2 \text{ x } 0.914 \text{ m} = 5.469 \text{ kN/m}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 5.469 \text{ x} (9.754)^2/8 = 65.0 \text{ kN-m}$

Reinforcing steel stress, $\sigma = 207 N / mm^2$ (calculated but not reported by SAFE)

PROGRAM NAME:	SAFE
REVISION NO.:	0

Check of Concrete Stresses at Midspan:

DEAD		
Drack Location		
 Slab Bottom Face 	Slab Top Face	
EC2 - 2004 Parameters		
Effective Concrete Rupture Strength	1.744374	N/mm2
Parameter kt	0.4	
Parameter k1	0.8	
Parameter k2	0.5	
Parameter k3	3.4	
Parameter k4	0.425	
Direction 1 - Clear Cover	19.05	mm
Direction 1 - Equivalent Bar Diameter	15.88	mm
Direction 2 - Clear Cover	19.05	mm
Direction 2 - Equivalent Bar Diameter	15.88	mm
Scaling		
 Automatic 		
O User Defined	Scale	
Contour Range		
Minimum	0	mm
Maximum	0	mm
Beset Defa	ults	

Figure 17-1 Settings used for this example

PROGRAM NAME: SAFI REVISION NO.: 0

SAFE 0

Calculation of Crack Width:

$$w_{k} = s_{r,\max}(\varepsilon_{sm} - \varepsilon_{cm})$$
where
$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_{s} - k_{t} \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} \rho_{p,eff})}{E_{s}} \ge 0.6 \frac{\sigma_{s}}{E_{s}}, \text{ where}$$

$$\rho_{p,eff} = As / A_{c.eff} = 1.53 \text{ mm}^{2} / \text{ mm} / (60 \text{ mm}^{2} / \text{ mm})$$

$$\rho_{p,eff} = 0.026$$

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{206N / \text{mm}^2 - 0.4 \frac{1.744N / \text{mm}^2}{0.026} (1 + 8(0.026))}{199948} \ge 0.6 \frac{206}{199948}$$

$$\varepsilon_{sm} - \varepsilon_{cm} = 0.0009 \ge 0.0006$$

$$s_{r,\max} = k_3 c + k_1 k_2 k_4 \phi / \rho_{p,\text{eff}} = 3.4 (19.0 \text{mm}) + 0.8 (0.5) (0.425) 15.8 \text{mm} / 0.026$$

$$= 168 \text{mm}$$

Total crack width, $w_k = s_{r,max} (\varepsilon_{sm} - \varepsilon_{cm}) = 168 \text{mm} (0.0009) = 0.151 \text{mm}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE ACI 318-14 PT-SL 001

Design Verification of Post-Tensioned Slab using the ACI 318-14 code

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 10 inches thick by 36 inches wide and spans 32 feet, as shown in shown in Figure 1. A 36-inch-wide design strip was centered along the length of the slab and was defined as an A-Strip. B-strips were placed at each end of the span perpendicular to the Strip-A (the B-Strips are necessary to define the tendon profile). A tendon, with two strands having an area of 0.153 square inches each, was added to the A-Strip. The self weight and live loads were added to the slab. The loads and posttensioning forces are shown below. The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

Loads: Dead = self weight, Live = 100psf

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 1 One-Way Slab

GEOMETRY, PROPERTIES AND LOADING

Thickness,	<i>T</i> , <i>h</i>	=	10	in
Effective depth,	d	=	9	in
Clear span,	L	=	384	in
Concrete strength,	f'_{c}	=	4,000	psi
Yield strength of steel,	f_y	=	60,000	psi
Prestressing, ultimate	f_{pu}	=	270,000)psi
Prestressing, effective	$f_{\scriptscriptstyle e}$	=	175,500) psi
Area of Prestress (single strand)	$, A_{P}$	=	0.153	sq in
Concrete unit weight,	W_c	=	0.150	pcf
Modulus of elasticity,	E_c	=	3,600	ksi
Modulus of elasticity,	E_s	=	29,000	ksi
Poisson's ratio,	ν	=	0	
Dead load,	Wd	=	self	psf
Live load,	Wl	=	100	psf

TECHNICAL FEATURES OF SAFE TESTED

- > Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live and post-tensioning loads.

PROGRAM NAME:	SAFE
REVISION NO.:	0

RESULTS COMPARISON

The SAFE total factored moments, required mild steel reinforcing and slab stresses are compared to the independent hand calculations in Table 1.

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	1429.0	1428.3	0.05%
Mu (Ultimate) (K-IN)			
Area of Mild Steel req'd, As (sq-in)	2.20	2.20	0.00%
Transfer Conc. Stress, top (D+PT _I), ksi	-0.734	-0.735	0.14%
Transfer Conc. Stress, bot (D+PT _I), ksi	0.414	0.414	0.00%
Normal Conc. Stress, top (D+L+PT _F), ksi	-1.518	-1.519	0.07%
Normal Conc. Stress, bot (D+L+PT _F), ksi	1.220	1.221	0.08%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), ksi	-1.134	-1.135	0.09%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), ksi	0.836	0.837	0.12%

COMPUTER FILE: ACI 318-14 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{S}_{1} REVISION NO.: $\underline{0}$

SAFE 0

CALCULATIONS:

Design Parameters: $\phi = 0.9$ Mild Steel Reinforcing f'c = 4000 psi fy = 60,000 psi $f_j = 216.0 \text{ ksi}$ Stressing Loss = 27.0 ksi Long-Term Loss = 13.5 ksi $f_i = 189.0 \text{ ksi}$ $f_e = 175.5 \text{ ksi}$

Loads:

Dead, self-wt =
$$10/12$$
 ft × 0.150 kcf = 0.125 ksf (D) × 1.2 = 0.150 ksf (D_u)
Live,
$$\frac{0.100 \text{ ksf (L)} \times 1.6 = 0.160 \text{ ksf (Lu)}}{\text{Total} = 0.225 \text{ ksf (D+L)}}$$
0.310 ksf (D+L)ult

 $\omega = 0.225 \text{ ksf} \times 3 \text{ ft} = 0.675 \text{ klf},$ $\omega_u = 0.310 \text{ ksf} \times 3 \text{ ft} = 0.930 \text{ klf}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 0.310 \text{ klf} \times 32^2/8 = 119.0 \text{ k-ft} = 1429.0 \text{ k-in}$

PROGRAM NAME: SAFE REVISION NO.: 0

Ultimate Stress in strand, $f_{PS} = f_{SE} + 10000 + \frac{f'c}{300\rho_P}$ (span-to-depth ratio > 35) = 175,500 + 10,000 + $\frac{4,000}{300(0.000944)}$ = 199,624 psi ≤ 205,500 psi

Ultimate force in PT, $F_{ult,PT} = A_p(f_{PS}) = 2(0.153)(199.62) = 61.08$ kips Ultimate force in RC, $F_{ult,RC} = A_s(f)_y = 2.00(\text{assumed})(60.0) = 120.0$ kips Total Ultimate force, $F_{ult,Total} = 61.08 + 120.0 = 181.08$ kips

Stress block depth, $a = \frac{F_{ult,Total}}{0.85 f'cb} = \frac{181.08}{0.85(4)(36)} = 1.48$ in

Ultimate moment due to PT, $M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 61.08 \left(9 - \frac{1.48}{2} \right) (0.9) = 454.1 \text{ k-in}$ Net ultimate moment, $M_{net} = M_U - M_{ult,PT} = 1429.0 - 454.1 = 974.9 \text{ k-in}$

Required area of mild steel reinforcing,
$$A_s = \frac{M_{net}}{\phi f_y \left(d - \frac{a}{2}\right)} = \frac{974.9}{0.9(60) \left(9 - \frac{1.48}{2}\right)} = 2.18 \text{ in}^2$$

Note: The required area of mild steel reinforcing was calculated from an assumed amount of steel. Since the assumed value and the calculated value are not the same a second iteration can be performed. The second iteration changes the depth of the stress block and the calculated area of steel value. Upon completion of the second iteration the area of steel was found to be 2.21in²

PROGRAM NAME: REVISION NO.: SAFE 0

Check of Concrete Stresses at Mid-Span:

Initial Condition (Transfer), load combination $(D + L + PT_i) = 1.0D + 1.0PT_I$

The stress in the tendon at transfer = jacking stress – stressing losses = 216.0 - 27.0

= 189.0 ksi

The force in the tendon at transfer, = 189.0(2)(0.153) = 57.83 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 57.83(4 \text{ in}) = 231.3$ k-in Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-57.83}{10(36)} \pm \frac{576.0 - 231.3}{600}$, where S = 600 in³ $f = -0.161 \pm 0.5745$ f = -0.735(Comp)max, 0.414(Tension)max

Normal Condition, load combinations: $(D + L + PT_F) = 1.0D + 1.0L + 1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 216.0 - 27.0 - 13.5 = 175.5 ksi The force in tendon at Normal, = 175.5(2)(0.153) = 53.70 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to dead load, $M_L = 0.100(3)(32)^2/8 = 38.4$ k-ft = 461 k-in Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 53.70(4 \text{ in}) = 214.8$ k-in

Stress in concrete for (D + L+ PT_F), $f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-53.70}{10(36)} \pm \frac{1037.0 - 214.8}{600}$ $f = -0.149 \pm 1.727 \pm 0.358$ f = -1.518(Comp) max, 1.220(Tension) max

Long-Term Condition, load combinations: $(D + 0.5L + PT_{F(L)}) = 1.0D + 0.5L + 1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 216.0 - 27.0 - 13.5 = 175.5 ksi The force in tendon at Normal, = 175.5(2)(0.153) = 53.70 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to dead load, $M_L = 0.100(3)(32)^2/8 = 38.4$ k-ft = 460 k-in Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 53.70(4 \text{ in}) = 214.8$ k-in

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Stress in concrete for (D + 0.5L + PT_{F(L)}), $f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-53.70}{10(36)} \pm \frac{806.0 - 214.8}{600}$ $f = -0.149 \pm 0.985$ $f = -1.134 (\text{Comp}) \max, 0.836 (\text{Tension}) \max$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-14 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the beam flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by ACI 318-14.
- The average shear stress in the beam falls below the maximum shear stress allowed by ACI 318-14, requiring design shear reinforcement.

A simple-span, 20-foot-long, 12-inch-wide, and 18-inch-deep T beam with a flange 4 inches thick and 24 inches wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size is specified as 6 inches. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness $(1 \times 10^{20} \text{ kip/in})$.

The beam is loaded with symmetric third-point loading. One dead load (DL02) case and one live load (LL30) case, with only symmetric third-point loads of magnitudes 3, and 30 kips, respectively, are defined in the model. One load combination (COMB30) is defined using the ACI 318-14 load combination factors of 1.2 for dead load and 1.6 for live load. The model is analyzed for both of these load cases and the load combination.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results and found to be identical. After completing the analysis, the design is performed using the ACI 318-14 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcement. Table 2 shows the comparison of the design shear reinforcement.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Beam Section

PROGRAM NAME:	SAFE
REVISION NO.:	0

GEOMETRY, PROPERTIES AND LOADING

Clear span	l	=	240	in
Overall depth	h	=	18	in
Flange thickness	d_s	=	4	in
Width of web	b_w	=	12	in
Width of flange,	b_{f}	=	24	in
Depth of tensile reinf.	d_c	=	3	in
Effective depth	d	=	15	in
Depth of comp. reinf.	d'	=	3	in
Concrete strength	f_c	=	4,000	psi
Yield strength of steel	f_y	=	60,000	psi
Concrete unit weight	Wc	=	0	pcf
Modulus of elasticity	E_c	=	3,600	ksi
Modulus of elasticity	E_s	=	29,000	ksi
Poisson's ratio	v	=	0.2	
Dead load	D.	_	2	kins
	Γd	_	<u> </u>	- Kips

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the beam with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of the design reinforcement.

Table 1 Comparison of Moments and Flexural Reinforcements

	Momont	Reinforcement Area (sq-in)
Method	(k-in)	As ⁺
SAFE	4032	5.808
Calculated	4032	5.808

 $A_{s,min}^{+} = 0.4752$ sq-in

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $rac{A_v}{s}$ (sq-in/ft)	
Shear Force (kip)	SAFE	Calculated
50.40	0.592	0.592

Computer File: ACI 318-14 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\varphi = 0.9$$

$$A_g = 264 \text{ sq-in}$$

$$A_{s,\min} = 0.0018A_g = 0.4752 \text{ sq-in}$$

$$\beta_1 = 0.85 - 0.05 \left(\frac{f'_c - 4000}{1000}\right) = 0.85$$

$$c_{\max} = \frac{0.003}{0.003 + 0.005} d = 5.625 \text{ in}$$

$$a_{\max} = \beta_1 c_{\max} = 4.78125 \text{ in}$$

$$A_s = \min[A_{s,\min}, (4/3) A_{s,\text{required}}] = \min[0.4752, (4/3)5.804] = 0.4752 \text{ sq-in}$$

COMB30

$$P_u = (1.2P_d + 1.6P_t) = 50.4 \text{ k}$$

 $M_u = \frac{P_u l}{3} = 4032 \text{ k-in}$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_u|}{0.85f_c^{'}\varphi b_f}} = 4.2671 \text{ in } (a > d_s)$$

Calculation for A_s is performed in two parts. The first part is for balancing the compressive force from the flange, C_f , and the second part is for balancing the compressive force from the web, C_w . C_f is given by:

$$C_f = 0.85 f_c' (b_f - b_w) d_s = 163.2 \text{ k}$$

The portion of M_u that is resisted by the flange is given by:

$$M_{uf} = C_f \left(d - \frac{d_s}{2}\right) \varphi = 1909.44 \text{ k-in}$$

0

SAFE

PROGRAM NAME: REVISION NO.:

Therefore, the area of tensile steel reinforcement to balance flange compression is:

$$A_{sI} = \frac{M_{uf}}{f_y (d - d_s/2) \varphi} = 2.7200 \text{ sq-in}$$

The balance of the moment to be carried by the web is given by:

$$M_{uw} = M_u - M_{uf} = 2122.56$$
 k-in

The web is a rectangular section with dimensions b_w and d, for which the design depth of the compression block is recalculated as

$$a_1 = d - \sqrt{d^2 - \frac{2M_{uw}}{0.85 f'_c \varphi b_w}} = 4.5409 \text{ in } (a_1 \le a_{\max})$$

The area of tensile steel reinforcement to balance the web compression is then given by:

$$A_{s2} = \frac{M_{uw}}{\varphi f_y \left(d - \frac{a_1}{2}\right)\varphi} = 3.0878 \text{ sq-in}$$

The area of total tensile steel reinforcement is then given by:

$$A_s = A_{s1} + A_{s2} = 5.808$$
 sq-in

Shear Design

The following quantities are computed for all of the load combinations:

$$\varphi = 0.75$$

Check the limit of $\sqrt{f_c'}$:

$$\sqrt{f_c'}$$
 = 63.246 psi < 100 psi

The concrete shear capacity is given by:

$$\varphi V_c = \varphi 2 \sqrt{f'_c} b_w d = 17.076 \,\mathrm{k}$$

The maximum shear that can be carried by reinforcement is given by:

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$\varphi V_s = -\varphi 8 \sqrt{f'_c} b_w d = -68.305 \text{ k}$$

The following limits are required in the determination of the reinforcement:

$$(\phi V_c/2)$$
 = 8.538 k
 $(\phi V_c + \phi 50 b_w d)$ = 23.826 k
 V_{max} = $\phi V_c + \phi V_s$ = 85.381 k

Given V_u , V_c and V_{max} , the required shear reinforcement in area/unit length for any load combination is calculated as follows:

If
$$V_u \le (V_c/2) \varphi$$
,
 $\frac{A_v}{s} = 0$,

else if $(V_c/2) \phi < V_u \leq (\phi V_c + \phi 50 b_w d)$,

$$\frac{A_v}{s}=\frac{50\,b_w}{f_y},$$

else if $(\varphi V_c + \varphi 50 \ b_w d) < V_u \le \varphi \ V_{max}$

$$\frac{A_v}{s} = \frac{(V_u - \varphi V_c)}{\varphi f_{vs} d}$$

else if $V_u > \phi V_{\text{max}}$,

a failure condition is declared.

For each load combination, the P_u and V_u are calculated as follows:

$$P_u = 1.2P_d + 1.6P_1$$
$$V_u = P_u$$

(COMB30)

$$P_{d} = 2 k$$

$$P_{l} = 30 k$$

$$P_{u} = 50.4 k$$

$$V_{u} = 50.4 k, (\varphi V_{c} + \varphi 50 b_{w} d) < V_{u} \le \varphi V_{max}$$

$$\frac{A_{v}}{s} = \frac{(V_{u} - \varphi V_{c})}{\varphi f_{vs} d} = 0.04937 \text{ sq-in/in or } 0.592 \text{ sq-in/ft}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-14 RC-PN-001 Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE.

The numerical example is a flat slab that has three 24-foot-long spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab For Numerical Example

PROGRAM NAME: REVISION NO.: SAFE 0

The slab overhangs the face of the column by 6 inches along each side of the structure. The columns are typically 12 inches wide by 36 inches long, with the long side parallel to the Y-axis. The slab is typically 10 inches thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 150 pcf and an f'c of 4000 psi. The dead load consists of the self weight of the structure plus an additional 20 psf. The live load is 80 psf.

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress, and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE punching shear capacity, shear stress ratio, and D/C ratio with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this example.

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (ksi)	Shear Capacity (ksi)	D/C ratio
SAFE	0.192	0.158	1.21
Calculated	0.193	0.158	1.22

Computer File: ACI 318-14 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation for Interior Column Using SAFE Method

d = [(10 - 1) + (10 - 2)] / 2 = 8.5"

Refer to Figure 2.

 $b_0 = 44.5 + 20.5 + 44.5 + 20.5 = 130"$

Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\gamma_{v_2} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{44.5}{20.5}}} = 0.4955$$
$$\gamma_{v_3} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{20.5}{44.5}}} = 0.3115$$

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

PROGRAM NAME: REVISION NO.: SAFE 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear, as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
X2	-10.25	0	10.25	0	N.A.
y 2	0	22.25	0	-22.25	N.A.
L	44.5	20.5	44.5	20.5	$b_0 = 130$
d	8.5	8.5	8.5	8.5	N.A.
Ld	378.25	174.25	378.25	174.25	1105
Ldx ₂	-3877.06	0	3877.06	0	0
Ldy ₂	0	3877.06	0	-3877.06	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{1105} = 0"$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{1105} = 0"$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	44.5	20.5	44.5	20.5	N.A.
d	8.5	8.5	8.5	8.5	N.A.
X ₂ - X ₃	-10.25	0	10.25	0	N.A.
y ₂ - y ₃	0	22.25	0	-22.25	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
I _{XX}	64696.5	86264.6	64696.5	86264.6	301922.3
I_{YY}	39739.9	7151.5	39739.9	7151.5	93782.8
I _{XY}	0	0	0	0	0

From the SAFE output at Grid B-2:

 $V_U = 189.45 \text{ k}$ $\gamma_{V2}M_{U2} = -156.39 \text{ k-in}$ $\gamma_{V3}M_{U3} = 91.538 \text{ k-in}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

At the point labeled A in Figure 2, $x_4 = -10.25$ and $y_4 = 22.25$, thus:

$$v_{U} = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 (22.25 - 0) - (0) (-10.25 - 0) \right]}{(301922.3)(93782.8) - (0)^{2}} - \frac{91.538 \left[301922.3 (-10.25 - 0) - (0) (22.25 - 0) \right]}{(301922.3)(93782.8) - (0)^{2}}$$

 $v_U = 0.1714 - 0.0115 - 0.0100 = 0.1499$ ksi at point A

At the point labeled B in Figure 2, $x_4 = 10.25$ and $y_4 = 22.25$, thus:

$$v_{U} = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 (22.25 - 0) - (0) (10.25 - 0) \right]}{(301922.3) (93782.8) - (0)^{2}} - \frac{91.538 \left[301922.3 (10.25 - 0) - (0) (22.25 - 0) \right]}{(301922.3) (93782.8) - (0)^{2}}$$

 $v_U = 0.1714 - 0.0115 + 0.0100 = 0.1699$ ksi at point B

At the point labeled C in Figure 2, $x_4 = 10.25$ and $y_4 = -22.25$, thus: $v_U = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 \left(-22.25 - 0 \right) - (0) \left(10.25 - 0 \right) \right]}{(301922.3) (93782.8) - (0)^2} - \frac{91.538 \left[301922.3 \left(10.25 - 0 \right) - (0) \left(-22.25 - 0 \right) \right]}{(301922.3) (93782.8) - (0)^2}$ $v_U = 0.1714 + 0.0115 + 0.0100 = 0.1930$ ksi at point C

At the point labeled D in Figure 2, $x_4 = -10.25$ and $y_4 = -22.25$, thus: $v_U = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 \left(-22.25 - 0 \right) - \left(0 \right) \left(-10.25 - 0 \right) \right]}{(301922.3) (93782.8) - \left(0 \right)^2} - \frac{91.538 \left[301922.3 \left(-10.25 - 0 \right) - \left(0 \right) \left(-22.25 - 0 \right) \right]}{(301922.3) (93782.8) - \left(0 \right)^2}$ $v_U = 0.1714 + 0.0115 - 0.0100 =$ **0.1729 ksi** at point D

PROGRAM NAME: REVISION NO.: SAFE 0

Point C has the largest absolute value of v_u , thus $v_{max} = 0.1930$ ksi

The shear capacity is calculated based on the smallest of ACI 318-14 equations 11-34, 11-35 and 11-36 with the b_0 and d terms removed to convert force to stress.

 $\varphi_{VC} = \frac{0.75 \left(2 + \frac{4}{36/12}\right) \sqrt{4000}}{1000} = 0.158$ ksi in accordance with equation 11-34

$$\varphi vc = \frac{0.75 \left(\frac{40 \cdot 8.5}{130} + 2\right) \sqrt{4000}}{1000} = 0.219 \text{ ksi in accordance with equation 11-35}$$

$$\varphi v_C = \frac{0.75 \bullet 4 \bullet \sqrt{4000}}{1000} = 0.190 \text{ ksi in accordance with equation } 11-36$$

Equation 11-34 yields the smallest value of $\phi v_C = 0.158$ ksi and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{\varphi v_C} = \frac{0.193}{0.158} = 1.22$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-14 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 6 inches thick and spans 12 feet between walls. The slab is modeled using thin plate elements. The walls are modeled as line supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified to be 36 inches. To obtain factored moments and flexural reinforcement in a design strip, one one-foot-wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL80) and one live load case (LL100) with uniformly distributed surface loads of magnitudes 80 and 100 psf, respectively, are defined in the model. A load combination (COMB100) is defined using the ACI 318-14 load combination factors, 1.2 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design is performed in accordance with ACI 318-14 using SAFE and also by hand computation. Table 1 shows the comparison of the moments and design reinforcements computed using the two methods.

GEOMETRY, PROPERTIES AND LOADING

Thickness T, h = 6 in

PROGRAM NAME: REVISION NO.: SAFE 0

Depth of tensile reinf. Effective depth Clear span	d_c d l_n , l_1	= =	1 5 144	in in in
Concrete strength	f_c	=	4,000	psi
Yield strength of steel	f_y	=	60,000	psi
Concrete unit weight	W_c	=	0	pcf
Modulus of elasticity	E_c	=	3,600	ksi
Modulus of elasticity	E_s	=	29,000	ksi
Poisson's ratio	ν	=	0	
Dead load	Wd	=	80	psf
Live load	Wl	=	100	psf

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1	Comparison	of Design	Moments and	Reinforcements
---------	------------	-----------	-------------	----------------

		Strip	Reinforcement Area (sq-in)
Load Level	Method	Moment (k-in)	A _s +
Madium	SAFE	55.22	0.213
wedium	Calculated	55.22	0.213

 $A_{s,\min}^{+} = 0.1296$ sq-in

Computer File: ACI 318-14 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

The following quantities are computed for the load combination:

 $\varphi = 0.9$ b = 12 in $A_{s,\min} = 0.0018bh = 0.1296 \text{ sq-in}$ $\beta_1 = 0.85 - 0.05 \left(\frac{f'_c - 4000}{1000}\right) = 0.85$ $c_{\max} = \frac{0.003}{0.003 + 0.005}d = 1.875 \text{ in}$ $a_{\max} = \beta_1 c_{\max} = 1.59375 \text{ in}$

For the load combination, w and M_u are calculated as follows:

$$w = (1.2w_d + 1.6w_t) b / 144$$
$$M_u = \frac{wl_1^2}{8}$$

 $A_s = \min[A_{s,\min}, (4/3) A_{s,\text{required}}] = \min[0.1296, (4/3)2.11] = 0.1296 \text{ sq-in}$

COMB100

 $w_d = 80 \text{ psf}$ $w_t = 100 \text{ psf}$ w = 21.33 lb/in $M_{u\text{-strip}} = 55.22 \text{ k-in}$ $M_{u\text{-design}} = 55.629 \text{ k-in}$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_u|}{0.85f_c'\varphi \ b}} = 0.3128 \text{ in } < a_{\max}$$

The area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M_{u}}{\varphi f_{y} \left(d - \frac{a}{2} \right)} = 0.213 \text{ sq-in} > A_{s,\min}$$
$$A_{s} = 0.2114 \text{ sq-in}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE ACI 318-11 PT-SL 001

Design Verification of Post-Tensioned Slab using the ACI 318-11 code

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 10 inches thick by 36 inches wide and spans 32 feet, as shown in shown in Figure 1. A 36-inch-wide design strip was centered along the length of the slab and was defined as an A-Strip. B-strips were placed at each end of the span perpendicular to the Strip-A (the B-Strips are necessary to define the tendon profile). A tendon, with two strands having an area of 0.153 square inches each, was added to the A-Strip. The self weight and live loads were added to the slab. The loads and posttensioning forces are shown below. The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

Loads: Dead = self weight, Live = 100psf

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 1 One-Way Slab

GEOMETRY, PROPERTIES AND LOADING

Thickness,	<i>T</i> , <i>h</i>	=	10	in
Effective depth,	d	=	9	in
Clear span,	L	=	384	in
Concrete strength,	f'_{c}	=	4,000	psi
Yield strength of steel,	f_y	=	60,000	psi
Prestressing, ultimate	f_{pu}	=	270,000) psi
Prestressing, effective	$f_{\scriptscriptstyle e}$	=	175,500) psi
Area of Prestress (single strand)	$, A_{P}$	=	0.153	sq in
Concrete unit weight,	Wc	=	0.150	pcf
Modulus of elasticity,	E_c	=	3,600	ksi
Modulus of elasticity,	E_s	=	29,000	ksi
Poisson's ratio,	ν	=	0	
Dead load,	Wd	=	self	psf
Live load,	Wl	=	100	psf

TECHNICAL FEATURES OF SAFE TESTED

- > Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live and post-tensioning loads.

PROGRAM NAME:	SAFE
REVISION NO.:	0

RESULTS COMPARISON

The SAFE total factored moments, required mild steel reinforcing and slab stresses are compared to the independent hand calculations in Table 1.

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment, Mu (Ultimate) (k-in)	1429.0	1428.3	0.05%
Area of Mild Steel req'd, As (sq-in)	2.20	2.20	0.00%
Transfer Conc. Stress, top (D+PT _I), ksi	-0.734	-0.735	0.14%
Transfer Conc. Stress, bot (D+PT _I), ksi	0.414	0.414	0.00%
Normal Conc. Stress, top (D+L+PT _F), ksi	-1.518	-1.519	0.07%
Normal Conc. Stress, bot (D+L+PT _F), ksi	1.220	1.221	0.08%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), ksi	-1.134	-1.135	0.09%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), ksi	0.836	0.837	0.12%

COMPUTER FILE: ACI 318-11 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{S}_{1} REVISION NO.: $\underline{0}$

SAFE 0

CALCULATIONS:

Design Parameters: $\phi = 0.9$ Mild Steel Reinforcing f'c = 4000 psi fy = 60,000 psi $f_j = 216.0 \text{ ksi}$ Stressing Loss = 27.0 ksi Long-Term Loss = 13.5 ksi $f_i = 189.0 \text{ ksi}$ $f_e = 175.5 \text{ ksi}$

Loads:

Dead, self-wt =
$$10/12$$
 ft × 0.150 kcf = 0.125 ksf (D) × 1.2 = 0.150 ksf (D_u)
Live,
$$\frac{0.100 \text{ ksf (L)} \times 1.6 = 0.160 \text{ ksf (Lu)}}{\text{Total} = 0.225 \text{ ksf (D+L)}}$$
0.310 ksf (D+L)ult

 $\omega = 0.225 \text{ ksf} \times 3 \text{ ft} = 0.675 \text{ klf},$ $\omega_u = 0.310 \text{ ksf} \times 3 \text{ ft} = 0.930 \text{ klf}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 0.310 \text{ klf} \times 32^2/8 = 119.0 \text{ k-ft} = 1429.0 \text{ k-in}$

PROGRAM NAME: SAFE REVISION NO.: 0

Ultimate Stress in strand, $f_{PS} = f_{SE} + 10000 + \frac{f'c}{300\rho_P}$ (span-to-depth ratio > 35) = 175,500 + 10,000 + $\frac{4,000}{300(0.000944)}$ = 199,624 psi ≤ 205,500 psi

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(0.153)(199.62) = 61.08$ kips Ultimate force in RC, $F_{ult,RC} = A_s(f)_y = 2.00(\text{assumed})(60.0) = 120.0$ kips Total Ultimate force, $F_{ult,Total} = 61.08 + 120.0 = 181.08$ kips

Stress block depth, $a = \frac{F_{ult,Total}}{0.85 f'cb} = \frac{181.08}{0.85(4)(36)} = 1.48$ in

Ultimate moment due to PT, $M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 61.08 \left(9 - \frac{1.48}{2} \right) (0.9) = 454.1 \text{ k-in}$ Net ultimate moment, $M_{net} = M_U - M_{ult,PT} = 1429.0 - 454.1 = 974.9 \text{ k-in}$

Required area of mild steel reinforcing,
$$A_s = \frac{M_{net}}{\phi f_y \left(d - \frac{a}{2}\right)} = \frac{974.9}{0.9(60)\left(9 - \frac{1.48}{2}\right)} = 2.18 \text{ in}^2$$

Note: The required area of mild steel reinforcing was calculated from an assumed amount of steel. Since the assumed value and the calculated value are not the same a second iteration can be performed. The second iteration changes the depth of the stress block and the calculated area of steel value. Upon completion of the second iteration the area of steel was found to be 2.21in²

PROGRAM NAME: REVISION NO.: SAFE 0

Check of Concrete Stresses at Mid-Span:

Initial Condition (Transfer), load combination $(D + L + PT_i) = 1.0D + 1.0PT_I$

The stress in the tendon at transfer = jacking stress – stressing losses = 216.0 - 27.0

= 189.0 ksi

The force in the tendon at transfer, = 189.0(2)(0.153) = 57.83 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 57.83(4 \text{ in}) = 231.3$ k-in Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-57.83}{10(36)} \pm \frac{576.0 - 231.3}{600}$, where S = 600 in³ $f = -0.161 \pm 0.5745$ f = -0.735(Comp)max, 0.414(Tension)max

Normal Condition, load combinations: $(D + L + PT_F) = 1.0D + 1.0L + 1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 216.0 - 27.0 - 13.5 = 175.5 ksi The force in tendon at Normal, = 175.5(2)(0.153) = 53.70 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to dead load, $M_L = 0.100(3)(32)^2/8 = 38.4$ k-ft = 461 k-in Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 53.70(4 \text{ in}) = 214.8$ k-in

Stress in concrete for (D + L+ PT_F), $f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-53.70}{10(36)} \pm \frac{1037.0 - 214.8}{600}$ $f = -0.149 \pm 1.727 \pm 0.358$ f = -1.518(Comp) max, 1.220(Tension) max

Long-Term Condition, load combinations: $(D + 0.5L + PT_{F(L)}) = 1.0D + 0.5L + 1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 216.0 - 27.0 - 13.5 = 175.5 ksi The force in tendon at Normal, = 175.5(2)(0.153) = 53.70 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to dead load, $M_L = 0.100(3)(32)^2/8 = 38.4$ k-ft = 460 k-in Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 53.70(4 \text{ in}) = 214.8$ k-in

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Stress in concrete for (D + 0.5L + PT_{F(L)}), $f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-53.70}{10(36)} \pm \frac{806.0 - 214.8}{600}$ $f = -0.149 \pm 0.985$ $f = -1.134 (\text{Comp}) \max, 0.836 (\text{Tension}) \max$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-11 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the beam flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by ACI 318-11.
- The average shear stress in the beam falls below the maximum shear stress allowed by ACI 318-11, requiring design shear reinforcement.

A simple-span, 20-foot-long, 12-inch-wide, and 18-inch-deep T beam with a flange 4 inches thick and 24 inches wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size is specified as 6 inches. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness $(1 \times 10^{20} \text{ kip/in})$.

The beam is loaded with symmetric third-point loading. One dead load (DL02) case and one live load (LL30) case, with only symmetric third-point loads of magnitudes 3, and 30 kips, respectively, are defined in the model. One load combination (COMB30) is defined using the ACI 318-11 load combination factors of 1.2 for dead load and 1.6 for live load. The model is analyzed for both of these load cases and the load combination.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results and found to be identical. After completing the analysis, the design is performed using the ACI 318-11 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcement. Table 2 shows the comparison of the design shear reinforcement.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Beam Section

PROGRAM NAME:	SAFE
REVISION NO.:	0

GEOMETRY, PROPERTIES AND LOADING

Clear span	l	=	240	in
Overall depth	h	=	18	in
Flange thickness	d_s	=	4	in
Width of web	b_w	=	12	in
Width of flange,	b_{f}	=	24	in
Depth of tensile reinf.	d_c	=	3	in
Effective depth	d	=	15	in
Depth of comp. reinf.	d'	=	3	in
Concrete strength	f_c	=	4,000	psi
Yield strength of steel	f_y	=	60,000	psi
Concrete unit weight	Wc	=	0	pcf
Modulus of elasticity	E_c	=	3,600	ksi
Modulus of elasticity	E_s	=	29,000	ksi
Poisson's ratio	V	=	0.2	
Dead load	P_d	=	2	kips
T ' 1 1				-

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the beam with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of the design reinforcement.

Table 1 Comparison of Moments and Flexural Reinforcements

	Momont	Reinforcement Area (sq-in)
Method	(k-in)	As ⁺
SAFE	4032	5.808
Calculated	4032	5.808

 $A_{s,min}^{+} = 0.4752$ sq-in

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-in/ft)		
Shear Force (kip)	SAFE	Calculated	
50.40	0.592	0.592	

Computer File: ACI 318-11 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\varphi = 0.9$$

$$A_g = 264 \text{ sq-in}$$

$$A_{s,\min} = 0.0018A_g = 0.4752 \text{ sq-in}$$

$$\beta_1 = 0.85 - 0.05 \left(\frac{f'_c - 4000}{1000}\right) = 0.85$$

$$c_{\max} = \frac{0.003}{0.003 + 0.005} d = 5.625 \text{ in}$$

$$a_{\max} = \beta_1 c_{\max} = 4.78125 \text{ in}$$

$$A_s = \min[A_{s,\min}, (4/3) A_{s,\text{required}}] = \min[0.4752, (4/3)5.804] = 0.4752 \text{ sq-in}$$

COMB30

$$P_u = (1.2P_d + 1.6P_t) = 50.4 \text{ k}$$

 $M_u = \frac{P_u l}{3} = 4032 \text{ k-in}$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_u|}{0.85f_c^{'}\varphi b_f}} = 4.2671 \text{ in } (a > d_s)$$

Calculation for A_s is performed in two parts. The first part is for balancing the compressive force from the flange, C_f , and the second part is for balancing the compressive force from the web, C_w . C_f is given by:

$$C_f = 0.85 f_c' (b_f - b_w) d_s = 163.2 \text{ k}$$

The portion of M_u that is resisted by the flange is given by:

$$M_{uf} = C_f \left(d - \frac{d_s}{2}\right) \varphi = 1909.44 \text{ k-in}$$

PROGRAM NAME: REVISION NO.: SAFE 0

Therefore, the area of tensile steel reinforcement to balance flange compression is:

$$A_{s1} = \frac{M_{uf}}{f_y (d - d_s/2) \varphi} = 2.7200 \text{ sq-in}$$

The balance of the moment to be carried by the web is given by:

$$M_{uw} = M_u - M_{uf} = 2122.56$$
 k-in

The web is a rectangular section with dimensions b_w and d, for which the design depth of the compression block is recalculated as

$$a_1 = d - \sqrt{d^2 - \frac{2M_{uw}}{0.85 f'_c \varphi b_w}} = 4.5409 \text{ in } (a_1 \le a_{\max})$$

The area of tensile steel reinforcement to balance the web compression is then given by:

$$A_{s2} = \frac{M_{uw}}{\varphi f_y \left(d - \frac{a_1}{2}\right)\varphi} = 3.0878 \text{ sq-in}$$

The area of total tensile steel reinforcement is then given by:

$$A_s = A_{s1} + A_{s2} = 5.808$$
 sq-in

Shear Design

The following quantities are computed for all of the load combinations:

$$\varphi = 0.75$$

Check the limit of $\sqrt{f_c'}$:

$$\sqrt{f_c'}$$
 = 63.246 psi < 100 psi

The concrete shear capacity is given by:

$$\varphi V_c = \varphi 2 \sqrt{f'_c} b_w d = 17.076 \text{ k}$$

The maximum shear that can be carried by reinforcement is given by:

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$\varphi V_s = -\varphi 8 \sqrt{f'_c} b_w d = -68.305 \text{ k}$$

The following limits are required in the determination of the reinforcement:

$$(\phi V_c/2)$$
 = 8.538 k
 $(\phi V_c + \phi 50 b_w d)$ = 23.826 k
 V_{max} = $\phi V_c + \phi V_s$ = 85.381 k

Given V_u , V_c and V_{max} , the required shear reinforcement in area/unit length for any load combination is calculated as follows:

If
$$V_u \le (V_c/2) \varphi$$
,
 $\frac{A_v}{s} = 0$,

else if $(V_c/2) \phi < V_u \leq (\phi V_c + \phi 50 b_w d)$,

$$\frac{A_v}{s}=\frac{50\,b_w}{f_y},$$

else if $(\varphi V_c + \varphi 50 \ b_w d) < V_u \le \varphi \ V_{max}$

$$\frac{A_v}{s} = \frac{(V_u - \varphi V_c)}{\varphi f_{vs} d}$$

else if $V_u > \phi V_{\text{max}}$,

a failure condition is declared.

For each load combination, the P_u and V_u are calculated as follows:

$$P_u = 1.2P_d + 1.6P_1$$
$$V_u = P_u$$

(COMB30)

$$P_{d} = 2 k$$

$$P_{l} = 30 k$$

$$P_{u} = 50.4 k$$

$$V_{u} = 50.4 k, (\varphi V_{c} + \varphi 50 b_{w} d) < V_{u} \le \varphi V_{max}$$

$$\frac{A_{v}}{s} = \frac{(V_{u} - \varphi V_{c})}{\varphi f_{vs} d} = 0.04937 \text{ sq-in/in or } 0.592 \text{ sq-in/ft}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-11 RC-PN-001 Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE.

The numerical example is a flat slab that has three 24-foot-long spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab For Numerical Example

PROGRAM NAME: REVISION NO.: SAFE 0

The slab overhangs the face of the column by 6 inches along each side of the structure. The columns are typically 12 inches wide by 36 inches long, with the long side parallel to the Y-axis. The slab is typically 10 inches thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 150 pcf and an f'c of 4000 psi. The dead load consists of the self weight of the structure plus an additional 20 psf. The live load is 80 psf.

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress, and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE punching shear capacity, shear stress ratio, and D/C ratio with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this example.

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (ksi)	Shear Capacity (ksi)	D/C ratio
SAFE	0.192	0.158	1.21
Calculated	0.193	0.158	1.22

COMPUTER FILE: ACI 318-11 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation for Interior Column Using SAFE Method

d = [(10 - 1) + (10 - 2)] / 2 = 8.5"

Refer to Figure 2.

 $b_0 = 44.5 + 20.5 + 44.5 + 20.5 = 130"$

Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\gamma_{v_2} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{44.5}{20.5}}} = 0.4955$$
$$\gamma_{v_3} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{20.5}{44.5}}} = 0.3115$$

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

PROGRAM NAME: REVISION NO.: SAFE 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear, as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
X2	-10.25	0	10.25	0	N.A.
y 2	0	22.25	0	-22.25	N.A.
L	44.5	20.5	44.5	20.5	$b_0 = 130$
d	8.5	8.5	8.5	8.5	N.A.
Ld	378.25	174.25	378.25	174.25	1105
Ldx ₂	-3877.06	0	3877.06	0	0
Ldy ₂	0	3877.06	0	-3877.06	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{1105} = 0"$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{1105} = 0"$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	44.5	20.5	44.5	20.5	N.A.
d	8.5	8.5	8.5	8.5	N.A.
X ₂ - X ₃	-10.25	0	10.25	0	N.A.
y ₂ - y ₃	0	22.25	0	-22.25	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
I _{XX}	64696.5	86264.6	64696.5	86264.6	301922.3
I_{YY}	39739.9	7151.5	39739.9	7151.5	93782.8
I _{XY}	0	0	0	0	0

From the SAFE output at Grid B-2:

 $V_U = 189.45 \text{ k}$ $\gamma_{V2}M_{U2} = -156.39 \text{ k-in}$ $\gamma_{V3}M_{U3} = 91.538 \text{ k-in}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

At the point labeled A in Figure 2, $x_4 = -10.25$ and $y_4 = 22.25$, thus:

$$v_{U} = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 (22.25 - 0) - (0) (-10.25 - 0) \right]}{(301922.3)(93782.8) - (0)^{2}} - \frac{91.538 \left[301922.3 (-10.25 - 0) - (0) (22.25 - 0) \right]}{(301922.3)(93782.8) - (0)^{2}}$$

 $v_U = 0.1714 - 0.0115 - 0.0100 = 0.1499$ ksi at point A

At the point labeled B in Figure 2, $x_4 = 10.25$ and $y_4 = 22.25$, thus:

$$v_{U} = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 (22.25 - 0) - (0) (10.25 - 0) \right]}{(301922.3) (93782.8) - (0)^{2}} - \frac{91.538 \left[301922.3 (10.25 - 0) - (0) (22.25 - 0) \right]}{(301922.3) (93782.8) - (0)^{2}}$$

 $v_U = 0.1714 - 0.0115 + 0.0100 = 0.1699$ ksi at point B

At the point labeled C in Figure 2, $x_4 = 10.25$ and $y_4 = -22.25$, thus: $v_U = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 \left(-22.25 - 0 \right) - (0) \left(10.25 - 0 \right) \right]}{(301922.3) (93782.8) - (0)^2} - \frac{91.538 \left[301922.3 \left(10.25 - 0 \right) - (0) \left(-22.25 - 0 \right) \right]}{(301922.3) (93782.8) - (0)^2}$ $v_U = 0.1714 + 0.0115 + 0.0100 = 0.1930$ ksi at point C

At the point labeled D in Figure 2, $x_4 = -10.25$ and $y_4 = -22.25$, thus: $v_U = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 \left(-22.25 - 0 \right) - \left(0 \right) \left(-10.25 - 0 \right) \right]}{(301922.3) (93782.8) - \left(0 \right)^2} - \frac{91.538 \left[301922.3 \left(-10.25 - 0 \right) - \left(0 \right) \left(-22.25 - 0 \right) \right]}{(301922.3) (93782.8) - \left(0 \right)^2}$ $v_U = 0.1714 + 0.0115 - 0.0100 =$ **0.1729 ksi** at point D

PROGRAM NAME: REVISION NO.: SAFE 0

Point C has the largest absolute value of v_u , thus $v_{max} = 0.1930$ ksi

The shear capacity is calculated based on the smallest of ACI 318-11 equations 11-34, 11-35 and 11-36 with the b_0 and d terms removed to convert force to stress.

 $\varphi vc = \frac{0.75 \left(2 + \frac{4}{36/12}\right) \sqrt{4000}}{1000} = 0.158$ ksi in accordance with equation 11-34

$$\varphi vc = \frac{0.75 \left(\frac{40 \cdot 8.5}{130} + 2\right) \sqrt{4000}}{1000} = 0.219 \text{ ksi in accordance with equation 11-35}$$

$$\varphi v_C = \frac{0.75 \bullet 4 \bullet \sqrt{4000}}{1000} = 0.190 \text{ ksi in accordance with equation } 11-36$$

Equation 11-34 yields the smallest value of $\phi v_C = 0.158$ ksi and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{\varphi v_C} = \frac{0.193}{0.158} = 1.22$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-11 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 6 inches thick and spans 12 feet between walls. The slab is modeled using thin plate elements. The walls are modeled as line supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified to be 36 inches. To obtain factored moments and flexural reinforcement in a design strip, one one-foot-wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL80) and one live load case (LL100) with uniformly distributed surface loads of magnitudes 80 and 100 psf, respectively, are defined in the model. A load combination (COMB100) is defined using the ACI 318-11 load combination factors, 1.2 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design is performed in accordance with ACI 318-11 using SAFE and also by hand computation. Table 1 shows the comparison of the moments and design reinforcements computed using the two methods.

GEOMETRY, PROPERTIES AND LOADING

Thickness T, h = 6 in

PROGRAM NAME: REVISION NO.: SAFE 0

Depth of tensile reinf. Effective depth Clear span	d_c d l_n , l_1	= =	1 5 144	in in in
Concrete strength	f_c	=	4,000	psi
Yield strength of steel	f_y	=	60,000	psi
Concrete unit weight	W_c	=	0	pcf
Modulus of elasticity	E_c	=	3,600	ksi
Modulus of elasticity	E_s	=	29,000	ksi
Poisson's ratio	ν	=	0	
Dead load	Wd	=	80	psf
Live load	Wl	=	100	psf

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1	Comparison of	of Design	Moments and	Reinforcements
---------	---------------	-----------	-------------	----------------

		Strip	Reinforcement Area (sq-in)	
Load Level	Method	Moment (k-in)	A _s +	
Madium	SAFE	55.22	0.213	
wedium	Calculated	55.22	0.213	

 $A_{s,\min}^{+} = 0.1296$ sq-in

Computer File: ACI 318-11 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

The following quantities are computed for the load combination:

 $\varphi = 0.9$ b = 12 in $A_{s,\min} = 0.0018bh = 0.1296 \text{ sq-in}$ $\beta_1 = 0.85 - 0.05 \left(\frac{f'_c - 4000}{1000}\right) = 0.85$ $c_{\max} = \frac{0.003}{0.003 + 0.005}d = 1.875 \text{ in}$ $a_{\max} = \beta_1 c_{\max} = 1.59375 \text{ in}$

For the load combination, w and M_u are calculated as follows:

$$w = (1.2w_d + 1.6w_t) b / 144$$
$$M_u = \frac{wl_1^2}{8}$$

 $A_s = \min[A_{s,\min}, (4/3) A_{s,\text{required}}] = \min[0.1296, (4/3)2.11] = 0.1296 \text{ sq-in}$

COMB100

$$w_d = 80 \text{ psf}$$

$$w_t = 100 \text{ psf}$$

$$w = 21.33 \text{ lb/in}$$

$$M_{u\text{-strip}} = 55.22 \text{ k-in}$$

$$M_{u\text{-design}} = 55.629 \text{ k-in}$$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_u|}{0.85f_c^{'}\varphi \ b}} = 0.3128 \text{ in } < a_{\max}$$

The area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M_{u}}{\varphi f_{y} \left(d - \frac{a}{2} \right)} = 0.213 \text{ sq-in} > A_{s,\min}$$
$$A_{s} = 0.2114 \text{ sq-in}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE ACI 318-08 PT-SL 001

Design Verification of Post-Tensioned Slab using the ACI 318-08 code

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 10 inches thick by 36 inches wide and spans 32 feet, as shown in shown in Figure 1. A 36-inch-wide design strip was centered along the length of the slab and was defined as an A-Strip. B-strips were placed at each end of the span perpendicular to the Strip-A (the B-Strips are necessary to define the tendon profile). A tendon, with two strands having an area of 0.153 square inches each, was added to the A-Strip. The self weight and live loads were added to the slab. The loads and posttensioning forces are shown below. The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

Loads: Dead = self weight, Live = 100psf

PROGRAM NAME: REVISION NO.: SAFE 0

Figure 1 One-Way Slab

GEOMETRY, PROPERTIES AND LOADING

Thickness,	<i>T</i> , <i>h</i>	=	10	in
Effective depth,	d	=	9	in
Clear span,	L	=	384	in
Concrete strength,	f'_{c}	=	4,000	psi
Yield strength of steel,	f_y	=	60,000	psi
Prestressing, ultimate	f_{pu}	=	270,000) psi
Prestressing, effective	$f_{\scriptscriptstyle e}$	=	175,500) psi
Area of Prestress (single strand)	$, A_{P}$	=	0.153	sq in
Concrete unit weight,	Wc	=	0.150	pcf
Modulus of elasticity,	E_c	=	3,600	ksi
Modulus of elasticity,	E_s	=	29,000	ksi
Poisson's ratio,	ν	=	0	
Dead load,	Wd	=	self	psf
Live load,	Wl	=	100	psf

TECHNICAL FEATURES OF SAFE TESTED

- > Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live and post-tensioning loads.

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

RESULTS COMPARISON

The SAFE total factored moments, required mild steel reinforcing and slab stresses are compared to the independent hand calculations in Table 1.

Table 1	Comparison	of Results
---------	------------	------------

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment, Mu (Ultimate) (k-in)	1429.0	1428.3	0.05%
Area of Mild Steel req'd, As (sq-in)	2.20	2.20	0.00%
Transfer Conc. Stress, top (D+PT _I), ksi	-0.734	-0.735	0.14%
Transfer Conc. Stress, bot (D+PT _I), ksi	0.414	0.414	0.00%
Normal Conc. Stress, top (D+L+PT _F), ksi	-1.518	-1.519	0.07%
Normal Conc. Stress, bot (D+L+PT _F), ksi	1.220	1.221	0.08%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), ksi	-1.134	-1.135	0.09%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), ksi	0.836	0.837	0.12%

COMPUTER FILE: ACI 318-05 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{S}_{1} REVISION NO.: $\underline{0}$

SAFE 0

CALCULATIONS:

Design Parameters: $\phi = 0.9$ Mild Steel Reinforcing f'c = 4000 psi fy = 60,000 psi $f_j = 216.0 \text{ ksi}$ Stressing Loss = 27.0 ksi Long-Term Loss = 13.5 ksi $f_i = 189.0 \text{ ksi}$ $f_e = 175.5 \text{ ksi}$

Loads:

Dead, self-wt =
$$10/12$$
 ft × 0.150 kcf = 0.125 ksf (D) × 1.2 = 0.150 ksf (D_u)
Live,
$$\frac{0.100 \text{ ksf (L)} \times 1.6 = 0.160 \text{ ksf (Lu)}}{\text{Total} = 0.225 \text{ ksf (D+L)}}$$
0.310 ksf (D+L)ult

 $\omega = 0.225 \text{ ksf} \times 3 \text{ ft} = 0.675 \text{ klf},$ $\omega_u = 0.310 \text{ ksf} \times 3 \text{ ft} = 0.930 \text{ klf}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 0.310 \text{ klf} \times 32^2/8 = 119.0 \text{ k-ft} = 1429.0 \text{ k-in}$

PROGRAM NAME: SAFE REVISION NO.: 0

Ultimate Stress in strand, $f_{PS} = f_{SE} + 10000 + \frac{f'c}{300\rho_P}$ (span-to-depth ratio > 35) = 175,500 + 10,000 + $\frac{4,000}{300(0.000944)}$ = 199,624 psi ≤ 205,500 psi

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(0.153)(199.62) = 61.08$ kips Ultimate force in RC, $F_{ult,RC} = A_s(f)_y = 2.00(\text{assumed})(60.0) = 120.0$ kips Total Ultimate force, $F_{ult,Total} = 61.08 + 120.0 = 181.08$ kips

Stress block depth, $a = \frac{F_{ult,Total}}{0.85 f'cb} = \frac{181.08}{0.85(4)(36)} = 1.48$ in

Ultimate moment due to PT, $M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 61.08 \left(9 - \frac{1.48}{2} \right) (0.9) = 454.1 \text{ k-in}$ Net ultimate moment, $M_{net} = M_U - M_{ult,PT} = 1429.0 - 454.1 = 974.9 \text{ k-in}$

Required area of mild steel reinforcing,
$$A_s = \frac{M_{net}}{\phi f_y \left(d - \frac{a}{2}\right)} = \frac{974.9}{0.9(60) \left(9 - \frac{1.48}{2}\right)} = 2.18 \text{ in}^2$$

Note: The required area of mild steel reinforcing was calculated from an assumed amount of steel. Since the assumed value and the calculated value are not the same a second iteration can be performed. The second iteration changes the depth of the stress block and the calculated area of steel value. Upon completion of the second iteration the area of steel was found to be 2.21in²

PROGRAM NAME: REVISION NO.: SAFE 0

Check of Concrete Stresses at Mid-Span:

Initial Condition (Transfer), load combination $(D + L + PT_i) = 1.0D + 1.0PT_I$

The stress in the tendon at transfer = jacking stress – stressing losses = 216.0 - 27.0

= 189.0 ksi

The force in the tendon at transfer, = 189.0(2)(0.153) = 57.83 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 57.83(4 \text{ in}) = 231.3$ k-in Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-57.83}{10(36)} \pm \frac{576.0 - 231.3}{600}$, where S = 600 in³ $f = -0.161 \pm 0.5745$ f = -0.735(Comp)max, 0.414(Tension)max

Normal Condition, load combinations: $(D + L + PT_F) = 1.0D + 1.0L + 1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 216.0 - 27.0 - 13.5 = 175.5 ksi The force in tendon at Normal, = 175.5(2)(0.153) = 53.70 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to dead load, $M_L = 0.100(3)(32)^2/8 = 38.4$ k-ft = 461 k-in Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 53.70(4 \text{ in}) = 214.8$ k-in

Stress in concrete for (D + L+ PT_F), $f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-53.70}{10(36)} \pm \frac{1037.0 - 214.8}{600}$ $f = -0.149 \pm 1.727 \pm 0.358$ f = -1.518(Comp) max, 1.220(Tension) max

Long-Term Condition, load combinations: $(D + 0.5L + PT_{F(L)}) = 1.0D + 0.5L + 1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 216.0 - 27.0 - 13.5 = 175.5 ksi The force in tendon at Normal, = 175.5(2)(0.153) = 53.70 kips Moment due to dead load, $M_D = 0.125(3)(32)^2/8 = 48.0$ k-ft = 576 k-in Moment due to dead load, $M_L = 0.100(3)(32)^2/8 = 38.4$ k-ft = 460 k-in Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 53.70(4 \text{ in}) = 214.8$ k-in

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Stress in concrete for (D + 0.5L + PT_{F(L)}), $f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-53.70}{10(36)} \pm \frac{806.0 - 214.8}{600}$ $f = -0.149 \pm 0.985$ $f = -1.134 (\text{Comp}) \max, 0.836 (\text{Tension}) \max$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-08 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the beam flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by ACI 318-08.
- The average shear stress in the beam falls below the maximum shear stress allowed by ACI 318-08, requiring design shear reinforcement.

A simple-span, 20-foot-long, 12-inch-wide, and 18-inch-deep T beam with a flange 4 inches thick and 24 inches wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size is specified as 6 inches. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness $(1 \times 10^{20} \text{ kip/in})$.

The beam is loaded with symmetric third-point loading. One dead load (DL02) case and one live load (LL30) case, with only symmetric third-point loads of magnitudes 3, and 30 kips, respectively, are defined in the model. One load combination (COMB30) is defined using the ACI 318-08 load combination factors of 1.2 for dead load and 1.6 for live load. The model is analyzed for both of these load cases and the load combination.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results and found to be identical. After completing the analysis, the design is performed using the ACI 318-08 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcement. Table 2 shows the comparison of the design shear reinforcement.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Beam Section

PROGRAM NAME:	SAFE
REVISION NO.:	0

GEOMETRY, PROPERTIES AND LOADING

Clear span	l	=	240	in
Overall depth	h	=	18	in
Flange thickness	d_s	=	4	in
Width of web	b_w	=	12	in
Width of flange,	b_{f}	=	24	in
Depth of tensile reinf.	d_c	=	3	in
Effective depth	d	=	15	in
Depth of comp. reinf.	d'	=	3	in
Concrete strength	f_c	=	4,000	psi
Yield strength of steel	f_y	=	60,000	psi
Concrete unit weight	Wc	=	0	pcf
Modulus of elasticity	E_c	=	3,600	ksi
Modulus of elasticity	E_s	=	29,000	ksi
Poisson's ratio	V	=	0.2	
Dead load	P_d	=	2	kips
T ' 1 1				-

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the beam with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of the design reinforcement.

Table 1 Comparison of Moments and Flexural Reinforcements

	Momont	Reinforcement Area (sq-in)
Method	(k-in)	As ⁺
SAFE	4032	5.808
Calculated	4032	5.808

 $A_{s,min}^{+} = 0.4752$ sq-in

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-in/ft)		
Shear Force (kip)	SAFE	Calculated	
50.40	0.592	0.592	

COMPUTER FILE: ACI 318-08 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\varphi = 0.9$$

$$A_g = 264 \text{ sq-in}$$

$$A_{s,\min} = 0.0018A_g = 0.4752 \text{ sq-in}$$

$$\beta_1 = 0.85 - 0.05 \left(\frac{f_c' - 4000}{1000}\right) = 0.85$$

$$c_{\max} = \frac{0.003}{0.003 + 0.005} d = 5.625 \text{ in}$$

$$a_{\max} = \beta_1 c_{\max} = 4.78125 \text{ in}$$

$$A_s = \min[A_{s,\min}, (4/3) A_{s,\text{required}}] = \min[0.4752, (4/3)5.804] = 0.4752 \text{ sq-in}$$

COMB30

$$P_u = (1.2P_d + 1.6P_t) = 50.4 \text{ k}$$

 $M_u = \frac{P_u l}{3} = 4032 \text{ k-in}$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_u|}{0.85f'_c \varphi b_f}} = 4.2671 \text{ in } (a > d_s)$$

Calculation for A_s is performed in two parts. The first part is for balancing the compressive force from the flange, C_f , and the second part is for balancing the compressive force from the web, C_w . C_f is given by:

$$C_f = 0.85 f_c' (b_f - b_w) d_s = 163.2 \text{ k}$$

The portion of M_u that is resisted by the flange is given by:

$$M_{uf} = C_f \left(d - \frac{d_s}{2}\right) \varphi = 1909.44 \text{ k-in}$$

PROGRAM NAME: REVISION NO.: SAFE 0

Therefore, the area of tensile steel reinforcement to balance flange compression is:

$$A_{s1} = \frac{M_{uf}}{f_y (d - d_s/2) \varphi} = 2.7200 \text{ sq-in}$$

The balance of the moment to be carried by the web is given by:

$$M_{uw} = M_u - M_{uf} = 2122.56$$
 k-in

The web is a rectangular section with dimensions b_w and d, for which the design depth of the compression block is recalculated as

$$a_1 = d - \sqrt{d^2 - \frac{2M_{uw}}{0.85 f'_c \varphi b_w}} = 4.5409 \text{ in } (a_1 \le a_{\max})$$

The area of tensile steel reinforcement to balance the web compression is then given by:

$$A_{s2} = \frac{M_{uw}}{\varphi f_y \left(d - \frac{a_1}{2}\right)\varphi} = 3.0878 \text{ sq-in}$$

The area of total tensile steel reinforcement is then given by:

$$A_s = A_{s1} + A_{s2} = 5.808$$
 sq-in

Shear Design

The following quantities are computed for all of the load combinations:

$$\phi = 0.75$$

Check the limit of $\sqrt{f_c'}$:

$$\sqrt{f_c'}$$
 = 63.246 psi < 100 psi

The concrete shear capacity is given by:

$$\varphi V_c = \varphi 2 \sqrt{f'_c} b_w d = 17.076 \text{ k}$$

The maximum shear that can be carried by reinforcement is given by:

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$\varphi V_s = \varphi 8 \sqrt{f'_c} b_w d = 68.305 \text{ k}$$

The following limits are required in the determination of the reinforcement:

$$(\phi V_c/2)$$
 = 8.538 k
 $(\phi V_c + \phi 50 b_w d)$ = 23.826 k
 V_{max} = $\phi V_c + \phi V_s$ = 85.381 k

Given V_u , V_c and V_{max} , the required shear reinforcement in area/unit length for any load combination is calculated as follows:

If
$$V_u \le (V_c/2) \varphi$$
,
 $\frac{A_v}{s} = 0$,

else if $(V_c/2) \phi < V_u \leq (\phi V_c + \phi 50 b_w d)$,

$$\frac{A_v}{s}=\frac{50\,b_w}{f_y},$$

else if $(\varphi V_c + \varphi 50 \ b_w d) < V_u \le \varphi \ V_{max}$

$$\frac{A_v}{s} = \frac{(V_u - \varphi V_c)}{\varphi f_{vs} d}$$

else if $V_u > \phi V_{\text{max}}$,

a failure condition is declared.

For each load combination, the P_u and V_u are calculated as follows:

$$P_u = 1.2P_d + 1.6P_1$$
$$V_u = P_u$$

(COMB30)

$$P_{d} = 2 k$$

$$P_{l} = 30 k$$

$$P_{u} = 50.4 k$$

$$V_{u} = 50.4 k, (\varphi V_{c} + \varphi 50 b_{w} d) < V_{u} \le \varphi V_{max}$$

$$\frac{A_{v}}{s} = \frac{(V_{u} - \varphi V_{c})}{\varphi f_{vs} d} = 0.04937 \text{ sq-in/in or } 0.592 \text{ sq-in/ft}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-08 RC-PN-001 Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE.

The numerical example is a flat slab that has three 24-foot-long spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab For Numerical Example

PROGRAM NAME: REVISION NO.: SAFE 0

The slab overhangs the face of the column by 6 inches along each side of the structure. The columns are typically 12 inches wide by 36 inches long, with the long side parallel to the Y-axis. The slab is typically 10 inches thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 150 pcf and an f'c of 4000 psi. The dead load consists of the self weight of the structure plus an additional 20 psf. The live load is 80 psf.

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress, and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE punching shear capacity, shear stress ratio, and D/C ratio with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this example.

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (ksi)	Shear Capacity (ksi)	D/C ratio
SAFE	0.192	0.158	1.21
Calculated	0.193	0.158	1.22

COMPUTER FILE: ACI 318-08 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation for Interior Column Using SAFE Method

d = [(10 - 1) + (10 - 2)] / 2 = 8.5"

Refer to Figure 2.

 $b_0 = 44.5 + 20.5 + 44.5 + 20.5 = 130"$

Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\gamma_{v_2} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{44.5}{20.5}}} = 0.4955$$
$$\gamma_{v_3} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{20.5}{44.5}}} = 0.3115$$

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

PROGRAM NAME: REVISION NO.: SAFE 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear, as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
X2	-10.25	0	10.25	0	N.A.
y 2	0	22.25	0	-22.25	N.A.
L	44.5	20.5	44.5	20.5	$b_0 = 130$
d	8.5	8.5	8.5	8.5	N.A.
Ld	378.25	174.25	378.25	174.25	1105
Ldx ₂	-3877.06	0	3877.06	0	0
Ldy ₂	0	3877.06	0	-3877.06	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{1105} = 0"$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{1105} = 0"$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	44.5	20.5	44.5	20.5	N.A.
d	8.5	8.5	8.5	8.5	N.A.
x ₂ - x ₃	-10.25	0	10.25	0	N.A.
y2 - y3	0	22.25	0	-22.25	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
I _{XX}	64696.5	86264.6	64696.5	86264.6	301922.3
I _{YY}	39739.9	7151.5	39739.9	7151.5	93782.8
I _{XY}	0	0	0	0	0

From the SAFE output at Grid B-2:

 $V_U = 189.45 \text{ k}$ $\gamma_{V2}M_{U2} = -156.39 \text{ k-in}$ $\gamma_{V3}M_{U3} = 91.538 \text{ k-in}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

At the point labeled A in Figure 2, $x_4 = -10.25$ and $y_4 = 22.25$, thus:

$$v_{U} = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 (22.25 - 0) - (0) (-10.25 - 0) \right]}{(301922.3)(93782.8) - (0)^{2}} - \frac{91.538 \left[301922.3 (-10.25 - 0) - (0) (22.25 - 0) \right]}{(301922.3)(93782.8) - (0)^{2}}$$

 $v_U = 0.1714 - 0.0115 - 0.0100 = 0.1499$ ksi at point A

At the point labeled B in Figure 2, $x_4 = 10.25$ and $y_4 = 22.25$, thus:

$$v_{U} = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 (22.25 - 0) - (0) (10.25 - 0) \right]}{(301922.3) (93782.8) - (0)^{2}} - \frac{91.538 \left[301922.3 (10.25 - 0) - (0) (22.25 - 0) \right]}{(301922.3) (93782.8) - (0)^{2}}$$

 $v_U = 0.1714 - 0.0115 + 0.0100 = 0.1699$ ksi at point B

At the point labeled C in Figure 2, $x_4 = 10.25$ and $y_4 = -22.25$, thus: $v_U = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 \left(-22.25 - 0 \right) - (0) \left(10.25 - 0 \right) \right]}{(301922.3) (93782.8) - (0)^2} - \frac{91.538 \left[301922.3 \left(10.25 - 0 \right) - (0) \left(-22.25 - 0 \right) \right]}{(301922.3) (93782.8) - (0)^2}$ $v_U = 0.1714 + 0.0115 + 0.0100 = 0.1930$ ksi at point C

At the point labeled D in Figure 2, $x_4 = -10.25$ and $y_4 = -22.25$, thus: $v_U = \frac{189.45}{130 \cdot 8.5} - \frac{156.39 \left[93782.8 \left(-22.25 - 0 \right) - \left(0 \right) \left(-10.25 - 0 \right) \right]}{(301922.3) (93782.8) - \left(0 \right)^2} - \frac{91.538 \left[301922.3 \left(-10.25 - 0 \right) - \left(0 \right) \left(-22.25 - 0 \right) \right]}{(301922.3) (93782.8) - \left(0 \right)^2}$ $v_U = 0.1714 + 0.0115 - 0.0100 =$ **0.1729 ksi** at point D

PROGRAM NAME: REVISION NO.: SAFE 0

Point C has the largest absolute value of v_u , thus $v_{max} = 0.1930$ ksi

The shear capacity is calculated based on the smallest of ACI 318-08 equations 11-34, 11-35 and 11-36 with the b_0 and d terms removed to convert force to stress.

 $\varphi_{VC} = \frac{0.75 \left(2 + \frac{4}{36/12}\right) \sqrt{4000}}{1000} = 0.158$ ksi in accordance with equation 11-34

$$\varphi vc = \frac{0.75 \left(\frac{40 \cdot 8.5}{130} + 2\right) \sqrt{4000}}{1000} = 0.219 \text{ ksi in accordance with equation 11-35}$$

$$\varphi_{VC} = \frac{0.75 \bullet 4 \bullet \sqrt{4000}}{1000} = 0.190 \text{ ksi in accordance with equation } 11-36$$

Equation 11-34 yields the smallest value of $\phi v_C = 0.158$ ksi and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{\varphi v_C} = \frac{0.193}{0.158} = 1.22$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE ACI 318-08 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 6 inches thick and spans 12 feet between walls. The slab is modeled using thin plate elements. The walls are modeled as line supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified to be 36 inches. To obtain factored moments and flexural reinforcement in a design strip, one one-foot-wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL80) and one live load case (LL100) with uniformly distributed surface loads of magnitudes 80 and 100 psf, respectively, are defined in the model. A load combination (COMB100) is defined using the ACI 318-08 load combination factors, 1.2 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design is performed in accordance with ACI 318-08 using SAFE and also by hand computation. Table 1 shows the comparison of the moments and design reinforcements computed using the two methods.

GEOMETRY, PROPERTIES AND LOADING

Thickness T, h = 6 in

PROGRAM NAME: REVISION NO.: SAFE 0

Depth of tensile reinf. Effective depth Clear span	d_c d l_n , l_1	= =	1 5 144	in in in
Concrete strength	f_c	=	4,000	psi
Yield strength of steel	f_y	=	60,000	psi
Concrete unit weight	W_c	=	0	pcf
Modulus of elasticity	E_c	=	3,600	ksi
Modulus of elasticity	E_s	=	29,000	ksi
Poisson's ratio	ν	=	0	
Dead load	Wd	=	80	psf
Live load	Wl	=	100	psf

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1	Comparison of	of Design	Moments and	Reinforcements
---------	---------------	-----------	-------------	----------------

		Strip	Reinforcement Area (sq-in	
Load Level	Method	Moment (k-in)	A _s +	
Madium	SAFE	55.22	0.213	
wedium	Calculated	55.22	0.213	

 $A_{s,\min}^{+} = 0.1296$ sq-in

Computer File: ACI 318-08 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

The following quantities are computed for the load combination:

 $\varphi = 0.9$ b = 12 in $A_{s,\min} = 0.0018bh = 0.1296 \text{ sq-in}$ $\beta_1 = 0.85 - 0.05 \left(\frac{f'_c - 4000}{1000}\right) = 0.85$ $c_{\max} = \frac{0.003}{0.003 + 0.005}d = 1.875 \text{ in}$ $a_{\max} = \beta_1 c_{\max} = 1.59375 \text{ in}$

For the load combination, w and M_u are calculated as follows:

$$w = (1.2w_d + 1.6w_i) b / 144$$
$$M_u = \frac{wl_1^2}{8}$$

 $A_s = \min[A_{s,\min}, (4/3) A_{s,\text{required}}] = \min[0.1296, (4/3)2.11] = 0.1296 \text{ sq-in}$

COMB100

$$w_d = 80 \text{ psf}$$

$$w_t = 100 \text{ psf}$$

$$w = 21.33 \text{ lb/in}$$

$$M_{u-strip} = 55.22 \text{ k-in}$$

$$M_{u-design} = 55.629 \text{ k-in}$$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_u|}{0.85f_c^{'}\varphi \ b}} = 0.3128 \text{ in } < a_{\max}$$

The area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M_{u}}{\varphi f_{y} \left(d - \frac{a}{2} \right)} = 0.213 \text{ sq-in} > A_{s,\min}$$
$$A_{s} = 0.2114 \text{ sq-in}$$

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

EXAMPLE AS 3600-09 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel reinforcing strength for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

A 914-mm-wide design strip is centered along the length of the slab and is defined as an A-Strip. B-Strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads were added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness,	<i>T</i> , <i>h</i>	=	254	mm
Effective depth,	d	=	229	mm
Clear span,	L	=	9754	mm
Concrete strength,	f'_c	=	30	MPa
Yield strength of steel,	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	\hat{f}_e	=	1210	MPa
Area of prestress (single tendon),	A_p	=	198	mm^2
Concrete unit weight,	W _c	=	23.56	KN/m ³
Concrete modulus of elasticity,	E_c	=	25000	N/mm ³
Rebar modulus of elasticity,	E_s	=	200,000	N/mm ³
Poisson's ratio,	ν	=	0	
Dead load,	Wd	=	self	KN/m ²
Live load,	WI	=	4.788	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing and slab stresses with the independent hand calculations.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	156.12	156.14	0.01%
Mu (Ultimate) (kN-m)	100112	100111	010170
Area of Mild Steel req'd, As (sq-cm)	16.55	16.59	0.24%
Transfer Conc. Stress, top (0.8D+1.15PTı), MPa	-3.500	-3.498	0.06%
Transfer Conc. Stress, bot (0.8D+1.15PTı), MPa	0.950	0.948	0.21%
Normal Conc. Stress, top (D+L+PT⊧), MPa	-10.460	-10.465	0.10%
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.05%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), MPa	-7.817	-7.817	0.00%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), MPa	5.759	5.759	0.00%

COMPUTER FILE: AS 3600-09 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.: SAFE 0

HAND CALCULATIONS:

Design Parameters:

Elevation

Loads:

$$\omega = 10.772 \text{ kN/m}^2 \text{ x } 0.914\text{m} = 9.846 \text{ kN/m}, \ \omega_u = 14.363 \text{ kN/m}^2 \text{ x } 0.914\text{m} = 13.128 \text{ kN/m}$$

Ultimate Moment,
$$M_U = \frac{w l_1^2}{8} = 13.128 \text{ x} (9.754)^2/8 = 156.12 \text{ kN-m}$$

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

Ultimate Stress in strand,
$$f_{PS} = f_{SE} + 70 + \frac{f'_C b_{ef} d_P}{300 A_P}$$

= $1210 + 70 + \frac{30(914)(229)}{300(198)}$
= $1386 \text{ MPa} \le f_{SE} + 200 = 1410 \text{ MPa}$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197.4(1386)/1000 = 273.60 \text{ kN}$ Total Ultimate force, $F_{ult,Total} = 273.60 + 560.0 = 833.60 \text{ kN}$

Stress block depth,
$$a = d - \sqrt{d^2 - \frac{2M^*}{0.85f'_c \phi b}}$$

= $0.229 - \sqrt{0.229^2 - \frac{2(159.12)}{0.85(30000)(0.80)(0.914)}} = 40.90$

Ultimate moment due to PT,

$$M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 273.60 \left(229 - \frac{40.90}{2} \right) (0.80) / 1000 = 45.65 \text{ kN-m}$$

Net ultimate moment, $M_{net} = M_U - M_{ult,PT} = 156.1 - 45.65 = 110.45 \text{ kN-m}$

Required area of mild steel reinforcing,

$$A_{s} = \frac{M_{net}}{\phi f_{y} \left(d - \frac{a}{2} \right)} = \frac{110.45}{0.80(400000) \left(0.229 - \frac{0.04090}{2} \right)} (1e6) = 1655 \text{ mm}^{2}$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (0.8D+1.15PT_i) = 0.80D+0.0L+1.15PT_I

Tendon stress at transfer = jacking stress - stressing losses =1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT} (sag) = 257.4(102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{(1.15)(-257.4)}{0.254(0.914)} \pm \frac{(0.80)65.04 - (1.15)26.23}{0.00983}$ where S = 0.00983m³ $f = -1.275 \pm 2.225$ MPa $f = -3.500(\text{Comp}) \max, 0.950(\text{Tension}) \max$

PROGRAM NAME: REVISION NO.: SAFE 0

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at Normal = jacking - stressing - long-term = 1490 - 186 - 94= 1210 MPa The force in tendon at Normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$
$$f = -1.029 \pm 9.431$$
$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

Long-Term Condition, load combinations: $(D+0.5L+PT_{F(L)}) = 1.0D+0.5L+1.0PT_F$

Tendon stress at Normal = jacking - stressing - long-term =1490 - 186 - 94 = 1210 MPa The force in tendon at Normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to dead load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for $(D+0.5L+PT_{F(L)})$,

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-238.9}{0.254(0.914)} \pm \frac{91.06 - 24.33}{0.00983}$$

$$f = -1.029 \pm 6.788$$

$$f = -7.817(\text{Comp}) \text{ max}, 5.759(\text{Tension}) \text{ max}$$

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

EXAMPLE AS 3600-09 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by AS 3600-09.
- The average shear stress in the beam is below the maximum shear stress allowed by AS 3600-09, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness $(1 \times 10^{20} \text{ kN/m})$.

The beam is loaded with symmetric third-point loading. One dead load case (DL30) and one live load case (LL130), with only symmetric third-point loads of magnitudes 30, and 130 kN, respectively, are defined in the model. One load combinations (COMB130) is defined using the AS 3600-09 load combination factors of 1.2 for dead load and 1.5 for live load. The model is analyzed for both of these load cases and the load combination.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results and found to be identical. After completing the analysis, the design is performed using the AS 3600-09 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Beam Section

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_c	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	$2x10^{8}$	MPa
Poisson's ratio,	v	=	0.2	
Dead load,	P_d	=	30	kN
Live load,	P_l	=	130	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the design reinforcement comparison.

Table 1 Comparison of Moments and Flexural Reinforcements

		Reinforcement Area (sq-cm)
Method	Moment (kN-m)	As ⁺
SAFE	462	33.512
Calculated	462	33.512

 $A_{s,min}^{+}$ = 3.00 sq-cm

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $rac{A_{_{arphi}}}{s}$ (sq-cm/m)	
Shear Force (kN)	SAFE	Calculated
231	12.05	12.05

COMPUTER FILE: AS 3600-09 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\varphi = 0.8$$

$$\alpha_2 = 1.0 - 0.003 f'_c = 0.91 > 0.85, \text{ Use } \alpha_2 = 0.85$$

$$\gamma = 1.05 - 0.007 f'_c = 0.84 < 0.85, \text{ Use } \gamma = 0.84$$

$$a_{\text{max}} = \gamma k_u d = 0.84 \cdot 0.36 \cdot 425 = 128.52 \text{ mm}$$

$$A_{\text{max}} = \alpha \left(\frac{D}{2}\right)^2 f'_{ct,f} h d \text{ where}$$

$$A_{st.min} = \alpha_b \left(\frac{D}{d}\right)^2 \frac{f'_{ct,f}}{f_{sy}} b_w d$$
, where

for L- and T-Sections with the web in tension:

$$\alpha_{b} = 0.20 + \left(\frac{b_{f}}{b_{w}} - 1\right) \left(0.4 \frac{D_{s}}{D} - 0.18\right) \ge 0.20 \left(\frac{b_{f}}{b_{w}}\right)^{1/4} = 0.2378$$
$$A_{st.min} = 0.2378 \left(\frac{D}{d}\right)^{2} \frac{f'_{ct,f}}{f_{sy}} bd$$
$$= 0.2378 \cdot (500/425)^{2} \cdot 0.6 \cdot \text{SQRT}(30)/460 \cdot 300*425$$
$$= 299.8 \text{ sq-mm}$$

COMB130

$$N^* = (1.2N_d + 1.5N_t) = 231$$
kN
 $M^* = \frac{N^*l}{3} = 462$ kN-m

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2M^*}{0.85f'_c \phi b_{ef}}} = 100.755 \text{ mm} (a > D_s)$$

The compressive force developed in the concrete alone is given by:

The first part is for balancing the compressive force from the flange, C_f , and the second part is for balancing the compressive force from the web, C_w , 2. C_f is given by:

0

SAFE

PROGRAM NAME: REVISION NO.:

$$C_f = 0.85 f'_c (b_{ef} - b_w) \times \min(D_s, a_{\max}) = 765 \text{ kN}$$

Therefore, $A_{s1} = \frac{C_f}{f_{sy}}$ and the portion of M^* that is resisted by the flange is given by:

$$M_{uf} = \phi C_f \left(d - \frac{\min(D_s, a_{\max})}{2} \right) = 229.5 \text{ kN-m}$$

$$A_{s1} = \frac{C_f}{f_{sy}} = 1663.043 \text{ sq-mm}$$

Again, the value for ϕ is 0.80 by default. Therefore, the balance of the moment, M^* to be carried by the web is:

$$M_{uw} = M^* - M_{uf} = 462 - 229.5 = 232.5$$

The web is a rectangular section of dimensions b_w and d, for which the design depth of the compression block is recalculated as:

$$a_1 = d - \sqrt{d^2 - \frac{2M_{uw}}{0.85f'_c \phi b_w}} = 101.5118 \text{ mm}$$

If $a_1 \le a_{\text{max}}$, the area of tension reinforcement is then given by:

$$A_{s2} = \frac{M_{uw}}{\phi f_{sy} \left(d - \frac{a_1}{2} \right)} = 1688.186 \text{ sq-mm}$$

$$A_{st} = A_{s1} + A_{s2} = 3351.23$$
 sq-mm = 33.512 sq-cm

Shear Design

The shear force carried by the concrete, V_{uc} , is calculated as:

$$V_{uc} = \beta_1 \beta_2 \beta_3 b_w d_o f'_{cv} \left[\frac{A_{st}}{b_w d_o} \right]^{1/3} = 0 \text{ kN}$$

where,

$$f'_{cv} = (f'_{c})^{1/3} = 3.107 \text{ N/mm}^2 \le 4\text{MPa}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$\beta_1 = 1.1 \left(1.6 - \frac{d_o}{1000} \right) \ge 1.1 = 1.2925, \ \beta_2 = 1 \text{ and } \beta_3 = 1$$

The shear force is limited to a maximum of:

 $V_{u,\text{max}} = 0.2 f'_{c} b d_{o} = 765 \text{ kN}$

Given V^* , V_{uc} , and $V_{u.max}$, the required shear reinforcement is calculated as follows, where, ϕ , the strength reduction factor, is 0.7.

- If $V^* \leq \phi V_{uc} / 2$,
 - $\frac{A_{sv}}{s} = 0$, if $D \le 750$ mm, otherwise $A_{sv.min}$ shall be provided.
- If $\phi V_{u.\min} < V^* \leq \phi V_{u.\max}$,

$$\frac{A_{sv}}{s} = \frac{\left(V^* - \phi V_{uc}\right)}{\phi f_{sy.f} d_o \cot \theta_v},$$

and greater than $A_{sv,min}$, defined as:

$$\frac{A_{sv.min}}{s} = \left(0.35 \frac{b_w}{f_{sy.f}}\right) = 0.22826 \text{ sq-mm/mm} = 228.26 \text{ sq-mm/m}$$

 θ_{v} = the angle between the axis of the concrete compression strut and the longitudinal axis of the member, which varies linearly from 30 degrees when $V^{*} = \phi V_{u,min}$ to 45 degrees when $V^{*} = \phi V_{u,max} = 35.52$ degrees

If $V^* > \phi V_{\text{max}}$, a failure condition is declared.

For load combination, the N^* and V^* are calculated as follows:

$$\mathbf{N}^* = 1.2N_d + 1.5N_d$$
$$\mathbf{V}^* = \mathbf{N}^*$$

(COMB130)

$$N_d$$
 = 30 kips
 N_l = 130 kips
 N^* = 231 kN

PROGRAM NAME: REVISION NO.:

N^{*} = 231 kN, (
$$\phi V_{u.min} < V^* \le \phi V_{u.max}$$
,)

 $\frac{A_{sv}}{s} = \frac{\left(V^* - \phi V_{uc}\right)}{\phi f_{sy.f} d_o \cot \theta_v}, = 1.205 \text{ sq-mm/mm or } 12.05 \text{ sq-cm/m}$

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

EXAMPLE AS 3600-09 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m, with the long side parallel to the Y-axis. The slab is typically 0.25-m thick. Thick plate properties are used for the slab.

PROGRAM NAME: REVISION NO.: SAFE 0

The concrete has a unit weight of 24 kN/m³ and a f'_c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress, and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio, and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Method	Shear Stress (N/mm²)	Shear Capacity (N/mm²)	D/C ratio
SAFE	1.811	1.086	1.67
Calculated	1.811	1.086	1.67

Table 1Comparison of Design Results for Punching
Shear at Grid Point B-2

COMPUTER FILE: AS 3600-09 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

 $d_{om} = [(250 - 26) + (250 - 38)] / 2 = 218 \text{ mm}$

Refer to Figure 2.

U = 518 + 1118 + 1118 + 518 = 3272 mm

 $a_x = 518 \text{ mm}$

 $a_y = 1118 \text{ mm}$

From the SAFE output at grid line B-2:

 $V^* = 1126.498 \text{ kN}$ $M_{v2} = -51.991 \text{ kN-m}$ $M_{v3} = 45.723 \text{ kN-m}$

PROGRAM NAME: REVISION NO.: SAFE 0

The maximum design shear stress is computed along the major and minor axis of column separately:

$$v_{\max} = \frac{V^*}{ud_{om}} \left[1.0 + \frac{uM_v}{8V^* ad_{om}} \right]$$
$$v_{\max,X} = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} \cdot \left(1 + \frac{3272 \cdot 51.991 \cdot 10^6}{8 \cdot 1126.498 \cdot 10^3 \cdot 1118 \cdot 218} \right)$$

 $v_{\max, X} = 1.579 \bullet 1.0774 = 1.7013 \text{ N/mm}^2$

$$v_{\max,Y} = \frac{1126.498 \bullet 10^3}{3272 \bullet 218} \bullet \left(1 + \frac{3272 \bullet 45.723 \bullet 10^6}{8 \bullet 1126.498 \bullet 10^3 \bullet 518 \bullet 218}\right)$$

 $v_{\max,Y} = 1.579 \bullet 1.1470 = 1.811 \text{ N/mm}^2 \text{ (Govern)}$

The largest absolute value of v_{max} = **1.811 N/mm²**

The shear capacity is calculated based on the smallest of AS 3600-09 equation 11-35, with the d_{om} and u terms removed to convert force to stress.

$$\varphi f_{cv} = \min \begin{cases} 0.17 \left(1 + \frac{2}{\beta_h} \right) \varphi \sqrt{f'_c} \\ 0.34 \varphi \sqrt{f'_c} \end{cases} = 1.803 \text{N/mm}^2 \text{ in accordance with AS } 9.2.3(\text{a}) \end{cases}$$

AS 9.2.3(a) yields the smallest value of $\varphi f_{cv} = 1.086 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{\varphi f_{cv}} = \frac{1.811}{1.086} = 1.67$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE AS 3600-2009 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa), with uniformly distributed surface loads of magnitudes 4 and 5 kN/m², respectively, are defined in the model. A load combination (COMB5kPa) is defined using the AS 3600-2009 load combination factors, 1.2 for dead loads and 1.5 for live loads. The model is analyzed for both load cases and the load combinations.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing analysis, design is performed using the AS 3600-2009 code using SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed using the two methods.

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

GEOMETRY, PROPERTIES AND LOADING

<i>T</i> , <i>h</i>	=	150	mm
d_c	=	25	mm
d	=	125	mm
l_n , l_1	=	4000	mm
f_c	=	30	MPa
f_{sv}	=	460	MPa
W _c	=	0	N/m ³
E_c	=	25000	MPa
E_s	=	$2x10^{6}$	MPa
ν	=	0	
Wa	=	4.0	kPa
W _l	=	5.0	kPa
	T, h d_c d l_n, l_1 f_c f_{sy} W_c E_c E_s v W_d W_l	$T, h = d_c = d_c$	$T, h = 150 d_c = 25 d = 125 l_n, l_l = 4000 f_{sy} = 460 w_c = 0 E_c = 25000 E_s = 2x10^6 v = 0 w_d = 4.0 w_l = 5.0 $

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1	Comparison	of Design	Moments and	Reinforcements
---------	------------	-----------	-------------	----------------

Lood		Strip	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	A _s +
Madium	SAFE	24.597	5.58
Medium	Calculated	24.600	5.58

 $A_{s,min}^{+}$ = 370.356 sq-mm

Computer File: AS 3600-2009 RC-SL-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

The following quantities are computed for the load combination:

 $\varphi = 0.8$ b = 1000 mm $\alpha_2 = 1.0 - 0.003 f'_c = 0.91 > 0.85, \text{ Use } \alpha_2 = 0.85$ $\gamma = 1.05 - 0.007 f'_c = 0.84 < 0.85, \text{ Use } \gamma = 0.84$ $a_{\text{max}} = \gamma k_u d = 0.84 \cdot 0.36 \cdot 125 = 37.80 \text{ mm}$

For the load combination, w and M^* are calculated as follows:

$$w = (1.2w_d + 1.5w_t) b$$

$$M_u = \frac{wl_1^2}{8}$$

$$A_s = 0.24 \left(\frac{h}{d}\right)^2 \frac{f_{ct,f}}{f_{sy,f}} bh \text{ for flat slabs}$$

$$A_{st.min} = 0.24 \left(\frac{h}{d}\right)^2 \frac{f_{ct,f}'}{f_{sy,f}} bd$$

$$= 0.24 \cdot (150/125)^2 \cdot 0.6 \cdot \text{SQRT}(30)/460 \cdot 1000 \cdot 150$$

$$= 370.356 \text{ sq-mm}$$

COMB100

 $w_d = 4.0 \text{ kPa}$ $w_t = 5.0 \text{ kPa}$ w = 12.3 kN/m $M_{-strip}^* = 24.6 \text{ kN-m}$ $M_{-design}^* = 24.633 \text{ kN-m}$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2M^*}{0.85f'_c \phi b}} = 10.065 \text{ mm} < a_{\text{max}}$$

PROGRAM NAME: REVISION NO.: SAFE 0

The area of tensile steel reinforcement is then given by:

$$A_{st} = \frac{M^*}{\phi f_{sy} \left(d - \frac{a}{2} \right)} = 557.966 \text{ sq-mm} > A_{s,\min}$$

 $A_s = 5.57966$ sq-cm

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE AS 3600-01 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel reinforcing strength for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

A 914-mm-wide design strip is centered along the length of the slab and is defined as an A-Strip. B-Strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self-weight and live loads were added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the midspan of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness,	<i>T</i> , <i>h</i>	=	254	mm
Effective depth,	d	=	229	mm
Clear span,	L	=	9754	mm
Concrete strength,	f'_c	=	30	MPa
Yield strength of steel,	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	fe	=	1210	MPa
Area of prestress (single tendon),	A_p	=	198	mm^2
Concrete unit weight,	Ŵc	=	23.56	KN/m ³
Concrete modulus of elasticity,	E_c	=	25000	N/mm ³
Rebar modulus of elasticity,	E_s	=	200,000	N/mm ³
Poisson's ratio,	ν	=	0	
Dead load,	Wd	=	self	KN/m ²
Live load,	Wi	=	4.788	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing and slab stresses with the independent hand calculations.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	156 12	156 14	0.01%
Mu (Ultimate) (kN-m)	100.12	100.14	0.0170
Area of Mild Steel req'd, As (sq-cm)	16.55	16.59	0.24%
Transfer Conc. Stress, top (0.8D+1.15PT _I), MPa	-3.500	-3.498	0.06%
Transfer Conc. Stress, bot (0.8D+1.15PT _I), MPa	0.950	0.948	0.21%
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0.10%
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.05%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), MPa	-7.817	-7.817	0.00%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), MPa	5.759	5.759	0.00%

Computer File: AS 3600-01 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.: SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

 $\omega = 10.772 \text{ kN/m}^2 \text{ x } 0.914 \text{m} = 9.846 \text{ kN/m}, \ \omega_u = 14.363 \text{ kN/m}^2 \text{ x } 0.914 \text{m} = 13.128 \text{ kN/m}$

Ultimate Moment, $M_U = \frac{wl_1^2}{8} = 13.128 \text{ x} (9.754)^2/8 = 156.12 \text{ kN-m}$

PROGRAM NAME:	SAFE
REVISION NO.:	0

Ultimate Stress in strand,
$$f_{PS} = f_{SE} + 70 + \frac{f'_C b_{ef} d_P}{300 A_P}$$

= $1210 + 70 + \frac{30(914)(229)}{300(198)}$
= $1386 \text{ MPa} \le f_{SE} + 200 = 1410 \text{ MPa}$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197.4(1386)/1000 = 273.60 \text{ kN}$ Total Ultimate force, $F_{ult,Total} = 273.60 + 560.0 = 833.60 \text{ kN}$

Stress block depth,
$$a = d - \sqrt{d^2 - \frac{2M^*}{0.85f'_c \phi b}}$$

= $0.229 - \sqrt{0.229^2 - \frac{2(159.12)}{0.85(30000)(0.80)(0.914)}} = 40.90$

Ultimate moment due to PT,

$$M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 273.60 \left(229 - \frac{40.90}{2} \right) (0.80) / 1000 = 45.65 \text{ kN-m}$$

Net ultimate moment, $M_{net} = M_U - M_{ult,PT} = 156.1 - 45.65 = 110.45 \text{ kN-m}$

Required area of mild steel reinforcing,

$$A_{s} = \frac{M_{net}}{\phi f_{y} \left(d - \frac{a}{2} \right)} = \frac{110.45}{0.80(400000) \left(0.229 - \frac{0.04090}{2} \right)} (1e6) = 1655 \text{ mm}^{2}$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (0.8D+1.15PT_i) = 0.80D+0.0L+1.15PT_I

Tendon stress at transfer = jacking stress - stressing losses =1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT} (sag) = 257.4(102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{(1.15)(-257.4)}{0.254(0.914)} \pm \frac{(0.80)65.04 - (1.15)26.23}{0.00983}$ where S = 0.00983m³ $f = -1.275 \pm 2.225$ MPa $f = -3.500(\text{Comp}) \max, 0.950(\text{Tension}) \max$

PROGRAM NAME: REVISION NO.: SAFE 0

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at Normal = jacking - stressing - long-term = 1490 - 186 - 94= 1210 MPa The force in tendon at Normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTT}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

Long-Term Condition, load combinations: $(D+0.5L+PT_{F(L)}) = 1.0D+0.5L+1.0PT_F$

Tendon stress at Normal = jacking - stressing - long-term =1490 - 186 - 94 = 1210 MPa The force in tendon at Normal, = 1210(197.4)/1000 = 238.9 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to dead load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37$ kN-m

Stress in concrete for (D+0.5L+PT_{F(L)}),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-238.9}{0.254(0.914)} \pm \frac{91.06 - 24.33}{0.00983}$$

$$f = -1.029 \pm 6.788$$

$$f = -7.817(\text{Comp}) \max, 5.759(\text{Tension}) \max$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE AS 3600-01 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by AS 3600-01.
- The average shear stress in the beam is below the maximum shear stress allowed by AS 3600-01, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL30) and one live load case (LL130), with only symmetric third-point loads of magnitudes 30, and 130 kN, respectively, are defined in the model. One load combinations (COMB130) is defined using the AS 3600-01 load combination factors of 1.2 for dead load and 1.5 for live load. The model is analyzed for both of these load cases and the load combination.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results and found to be identical. After completing the analysis, the design is performed using the AS 3600-01 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Beam Section

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_c	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	$2x10^{8}$	MPa
Poisson's ratio,	v	=	0.2	
Dead load,	P_d	=	30	kN
Live load	P_1	=	130	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the design reinforcement comparison.

Table 1 Comparison of Moments and Flexural Reinforcements

		Reinforcement Area (sq-cm)
Method	Moment (kN-m)	As+
SAFE	462	33.512
Calculated	462	33.512

 $A_{s,min}^{+}$ = 3.92 sq-cm

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-cm/m)	
Shear Force (kN)	SAFE	Calculated
231	12.05	12.05

COMPUTER FILE: AS 3100-01 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\varphi = 0.8$$

$$\gamma = [0.85 - 0.007(f'_c - 28)] = 0.836$$

$$a_{\text{max}} = \gamma k_u d = 0.836 \cdot 0.4 \cdot 425 = 142.12 \text{ mm}$$

$$A_{st.\text{min}} = 0.22 \left(\frac{D}{d}\right)^2 \frac{f'_{cf}}{f_{sy}} A_c$$

$$= 0.22 \cdot (500/425)^2 \cdot 0.6 \cdot \text{SQRT}(30)/460 \cdot 180,000$$

$$= 391.572 \text{ sq-mm}$$

COMB130

$$N^* = (1.2N_d + 1.5N_t) = 231$$
kN
 $M^* = \frac{N^*l}{3} = 462$ kN-m

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2M^*}{0.85f'_c \phi b_{ef}}} = 100.755 \text{ mm} (a > D_s)$$

The compressive force developed in the concrete alone is given by:

The first part is for balancing the compressive force from the flange, C_f , and the second part is for balancing the compressive force from the web, C_w , 2. C_f is given by:

$$C_f = 0.85 f'_c (b_{ef} - b_w) \times \min(D_s, a_{\max}) = 765 \text{ kN}$$

Therefore, $A_{s1} = \frac{C_f}{f_{sy}}$ and the portion of M^* that is resisted by the flange is given by:

$$M_{uf} = \phi C_f \left(d - \frac{\min(D_s, a_{\max})}{2} \right) = 229.5 \text{ kN-m}$$

0

SAFE

PROGRAM NAME: REVISION NO.:

$$A_{s1} = \frac{C_f}{f_{sy}} = 1663.043$$
 sq-mm

Again, the value for ϕ is 0.80 by default. Therefore, the balance of the moment, M^* to be carried by the web is:

$$M_{uw} = M^* - M_{uf} = 462 - 229.5 = 232.5$$

The web is a rectangular section of dimensions b_w and d, for which the design depth of the compression block is recalculated as:

$$a_1 = d - \sqrt{d^2 - \frac{2M_{uw}}{0.85f'_c \phi b_w}} = 101.5118 \text{ mm}$$

If $a_1 \le a_{\text{max}}$, the area of tension reinforcement is then given by:

$$A_{s2} = \frac{M_{uw}}{\phi f_{sy} \left(d - \frac{a_1}{2} \right)} = 1688.186 \text{ sq-mm}$$

$$A_{st} = A_{s1} + A_{s2} = 3351.23$$
 sq-mm = 33.512 sq-cm

Shear Design

The shear force carried by the concrete, V_{uc} , is calculated as:

$$V_{uc} = \beta_1 \beta_2 \beta_3 b_w d_o \left[\frac{A_{st} f'_c}{b_w d_o} \right]^{1/3} = 0 \text{ kN}$$

where, $\beta_1 = 1.1 \left(1.6 - \frac{d_o}{1000} \right) \ge 1.1 = 1.2925$, $\beta_2 = 1$ and $\beta_3 = 1$

The shear force is limited to a maximum of:

$$V_{u.\text{max}} = 0.2 f'_{c} b d_{o} = 765 \text{ kN}$$

Given V^* , V_{uc} , and $V_{u.max}$, the required shear reinforcement is calculated as follows, where, ϕ , the strength reduction factor, is 0.7.

If
$$V^* \le \phi V_{uc} / 2$$
,
 $\frac{A_{sv}}{s} = 0$, if $D \le 750$ mm, otherwise $A_{sv.min}$ shall be provided.

PROGRAM NAME:	SAFE
REVISION NO.:	0

If
$$\phi V_{u.\min} < V^* \le \phi V_{u.\max}$$

$$\frac{A_{sv}}{s} = \frac{\left(V^* - \phi V_{uc}\right)}{\phi f_{sy.f} d_o \cot \theta_v},$$

and greater than $A_{sv.min}$, defined as:

$$\frac{A_{sv.min}}{s} = \left(0.35 \frac{b_w}{f_{sy.f}}\right) = 0.22826 \text{ sq-mm/mm} = 228.26 \text{ sq-mm/m}$$

 θ_v = the angle between the axis of the concrete compression strut and the longitudinal axis of the member, which varies linearly from 30 degrees when $V^* = \phi V_{u,min}$ to 45 degrees when $V^* = \phi V_{u,max} = 35.52$ degrees

If $V^* > \phi V_{\text{max}}$, a failure condition is declared.

For load combination, the N^* and V^* are calculated as follows:

$$\mathbf{N}^* = 1.2N_d + 1.5N_d$$
$$\mathbf{V}^* = \mathbf{N}^*$$

(COMB130)

$$N_{d} = 30 \text{ kips}$$

$$N_{l} = 130 \text{ kips}$$

$$N^{*} = 231 \text{ kN}$$

$$N^{*} = 231 \text{ kN}, (\phi V_{u.min} < V^{*} \le \phi V_{u.max},)$$

$$\frac{A_{sv}}{s} = \frac{\left(V^{*} - \phi V_{uc}\right)}{\phi f_{sy.f} d_{o} \cot \theta_{v}}, = 1.205 \text{ sq-mm/mm or } 12.05 \text{ sq-cm/m}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE AS 3600-01 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m, with the long side parallel to the Y-axis. The slab is typically 0.25-m thick. Thick plate properties are used for the slab.

PROGRAM NAME: REVISION NO.: SAFE 0

The concrete has a unit weight of 24 kN/m³ and a f'c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress, and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio, and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Method	Shear Stress (N/mm ²)	Shear Capacity (N/mm²)	D/C ratio
SAFE	1.811	1.086	1.67
Calculated	1.811	1.086	1.67

Table 1Comparison of Design Results for Punching
Shear at Grid Point B-2

COMPUTER FILE: AS 3600-01 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

 $d_{om} = [(250 - 26) + (250 - 38)] / 2 = 218 \text{ mm}$

Refer to Figure 2.

U = 518 + 1118 + 1118 + 518 = 3272 mm

 $a_x = 518 \text{ mm}$

 $a_y = 1118 \text{ mm}$

From the SAFE output at grid line B-2:

 $V^* = 1126.498 \text{ kN}$ $M_{v2} = -51.991 \text{ kN-m}$ $M_{v3} = 45.723 \text{ kN-m}$

PROGRAM NAME: REVISION NO.: SAFE 0

The maximum design shear stress is computed along the major and minor axis of column separately:

$$v_{\max} = \frac{V^*}{ud_{om}} \left[1.0 + \frac{uM_v}{8V^* ad_{om}} \right]$$
$$v_{\max,X} = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} \cdot \left(1 + \frac{3272 \cdot 51.991 \cdot 10^6}{8 \cdot 1126.498 \cdot 10^3 \cdot 1118 \cdot 218} \right)$$

 $v_{\max, X} = 1.579 \bullet 1.0774 = 1.7013 \text{ N/mm}^2$

$$v_{\max,Y} = \frac{1126.498 \bullet 10^3}{3272 \bullet 218} \bullet \left(1 + \frac{3272 \bullet 45.723 \bullet 10^6}{8 \bullet 1126.498 \bullet 10^3 \bullet 518 \bullet 218}\right)$$

 $v_{\max,Y} = 1.579 \bullet 1.1470 = 1.811 \text{ N/mm}^2 \text{ (Govern)}$

The largest absolute value of v_{max} = **1.811 N/mm²**

The shear capacity is calculated based on the smallest of AS 3600-01 equation 11-35, with the d_{om} and u terms removed to convert force to stress.

$$\varphi f_{cv} = \min \begin{cases} 0.17 \left(1 + \frac{2}{\beta_h} \right) \varphi \sqrt{f'_c} \\ 0.34 \varphi \sqrt{f'_c} \end{cases} = 1.803 \text{N/mm}^2 \text{ in accordance with AS } 9.2.3(\text{a}) \end{cases}$$

AS 9.2.3(a) yields the smallest value of $\varphi f_{cv} = 1.086 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{\varphi f_{cv}} = \frac{1.811}{1.086} = 1.67$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE AS 3600-2001 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa), with uniformly distributed surface loads of magnitudes 4 and 5 kN/m², respectively, are defined in the model. A load combination (COMB5kPa) is defined using the AS 3600-2001 load combination factors, 1.2 for dead loads and 1.5 for live loads. The model is analyzed for both load cases and the load combinations.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing analysis, design is performed using the AS 3600-2001 code using SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed using the two methods.

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

GEOMETRY, PROPERTIES AND LOADING

<i>T</i> , <i>h</i>	=	150	mm
d_c	=	25	mm
d	=	125	mm
l_n , l_1	=	4000	mm
f_c	=	30	MPa
f_{sv}	=	460	MPa
W_c	=	0	N/m ³
E_c	=	25000	MPa
E_s	=	$2x10^{6}$	MPa
ν	=	0	
Wd	=	4.0	kPa
Wl	=	5.0	kPa
	T, h d_c d l_n, l_1 f_c f_{sy} w_c E_c E_s v w_d w_l	$T, h = d_c = d_c$	$T, h = 150 d_c = 25 d = 125 l_n, l_l = 4000 f_c = 30 f_{sy} = 460 w_c = 0 E_c = 25000 E_s = 2x10^6 v = 0 w_d = 4.0 w_l = 5.0 $

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1	Comparison	of Design	Moments and	Reinforcements
---------	------------	-----------	-------------	----------------

Lood		Strip Momont	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	A _s +
Madium	SAFE	24.597	5.58
Medium	Calculated	24.600	5.58

 $A_{s,\min}^{+} = 282.9 \text{ sq-mm}$

Computer File: AS 3600-2001 RC-SL-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

The following quantities are computed for the load combination:

 $\varphi = 0.8$ b = 1000 mm $\gamma = [0.85 - 0.007(f'_c - 28)] = 0.836$ $a_{\text{max}} = \gamma k_u d = 0.836 \cdot 0.4 \cdot 125 = 41.8 \text{ mm}$

For the load combination, w and M^* are calculated as follows:

$$w = (1.2w_d + 1.5w_t) b$$

$$M_u = \frac{wl_1^2}{8}$$

$$A_{st.min} = 0.22 \left(\frac{D}{d}\right)^2 \frac{f'_{cf}}{f_{sy}} bd$$

$$= 0.22 \cdot (150/125)^2 \cdot 0.6 \cdot \text{SQRT}(30)/460 \cdot 100 \cdot 125$$

$$= 282.9 \text{ sq-mm}$$

COMB100

$$w_d = 4.0 \text{ kPa}$$

$$w_t = 5.0 \text{ kPa}$$

$$w = 12.3 \text{ kN/m}$$

$$M_{-strip}^* = 24.6 \text{ kN-m}$$

$$M_{-design}^* = 24.633 \text{ kN-m}$$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2M^*}{0.85f'_c \phi b}} = 10.065 \text{ mm} < a_{\text{max}}$$

The area of tensile steel reinforcement is then given by:

$$A_{st} = \frac{M^*}{\oint f_{sy} \left(d - \frac{a}{2} \right)} = 557.966 \text{ sq-mm} > A_{s,\min}$$

PROGRAM NAME: REVISION NO.: SAFE 0

 $A_s = 5.57966$ sq-cm

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE BS 8110-97 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², was added to the A-Strip. The self-weight and live loads were added to the slab. The loads and posttensioning forces are as follows.

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the midspan of the slab. Independent hand calculations have been compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	W_c	=	23.56	kN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	kN/m ²
Live load	W_l	=	4.788	kN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

PROGRAM NAME: $\underline{S_2}$ REVISION NO.: $\underline{0}$

SAFE 0

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE	
Factored moment,	174.4	174.4	0.00%	
Mu (Ultimate) (kN-m)				
Area of Mild Steel req'd, As (sq-cm)	19.65	19.79	0.71%	
Transfer Conc. Stress, top (D+PT _I), MPa	-5.058	-5.057	0.02%	
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%	
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0. 50%	
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.06%	

COMPUTER FILE: BS 8110-97 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME:SAFREVISION NO.:0

SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

Dead, self-wt = 0.254 m x 23.56 kN/m³ = 5.984 kN/m² (D) x 1.4 = 8.378 kN/m² (D_u) Live, = $\frac{4.788 \text{ kN/m^2} (\text{L}) \text{ x } 1.6 \text{ = } 7.661 \text{ kN/m^2} (\text{L}_u)}{\text{Total} = 10.772 \text{ kN/m^2} (\text{D+L})} = 16.039 \text{ kN/m^2} (\text{D+L})\text{ult}$

 $\omega = 10.772 \text{ kN/m}^2 \text{ x } 0.914\text{m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \text{ x } 0.914\text{m} = 14.659 \text{ kN/m}$ Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 14.659 \text{ x } (9.754)^2/8 = 174.4 \text{ kN-m}$ Ultimate Stress in strand, $f_{pb} = f_{pe} + \frac{7000}{l/d} \left(1 - 1.7 \frac{f_{pu} A_p}{f_{cu} bd} \right)$ $= 1210 + \frac{7000}{9.754/0.229} \left(1 - 1.7 \frac{1862(198)}{30(914)(229)} \right)$ $= 1358 \text{ MPa} \le 0.7 f_{pu} = 1303 \text{ MPa}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

K factor used to determine the effective depth is given as:

$$K = \frac{M}{f_{cu}bd^2} = \frac{174.4}{30000(0.914)(0.229)^2} = 0.1213 < 0.156$$
$$z = d\left(0.5 + \sqrt{0.25 - \frac{K}{0.9}}\right) \le 0.95d = 192.2 \text{ mm}$$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197.4(1303)/1000 = 257.2KN$

Ultimate moment due to PT, $M_{ult,PT} = F_{ult,PT}(z) / \gamma = 257.2(0.192)/1.15 = 43.00$ kN-m

Net Moment to be resisted by As, $M_{NET} = M_U - M_{PT}$ = 174.4 - 43.00 = 131.40 kN-m

The area of tensile steel reinforcement is then given by:

$$A_s = \frac{M_{NET}}{0.87 f_v z} = \frac{131.4}{0.87 (400)(192)} (1e6) = 1965 \text{ mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I Tendon stress at transfer = jacking stress - stressing losses = 1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 257.4(102\text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTI}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ where S=0.00983m³ $f = -1.109 \pm 3.948$ MPa f = -5.058(Comp) max, 2.839(Tension) max

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$ Tendon stress at Normal = jacking – stressing – long-term = 1490 – 186 – 94= 1210 MPa The force in tendon at Normal, = 1210(197.4)/1000 = 238.9 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04$ kN-m Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37$ kN-m

PROGRAM NAME: REVISION NO.: SAFE 0

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE BS 8110-97 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by BS 8110-97.
- The average shear stress in the beam is below the maximum shear stress allowed by BS 8110-97, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL20) and one live load case (LL80) with only symmetric third-point loads of magnitudes 20 and 80 kN, respectively, are defined in the model. One load combinations (COMB80) is defined using the BS 8110-97 load combination factors of 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the BS 8110-97 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Beam Section

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

GEOMETRY, PROPERTIES AND LOADING

Clear span	l	=	6000	mm
Overall depth	h	=	500	mm
Flange thickness	d_s	=	100	mm
Width of web	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.	d_c	=	75	mm
Effective depth	d	=	425	mm
Depth of comp. reinf.	d'	=	75	mm
Concrete strength	f_c	=	30	MPa
Yield strength of steel	f_y	=	460	MPa
Concrete unit weight	W _c	=	0	kN/m ³
Modulus of elasticity	E_c	=	25×10^{5}	MPa
Modulus of elasticity	E_s	=	$2x10^{8}$	MPa
Poisson's ratio	v	=	0.2	
Dead load	P_d	=	20	kN
Live load	D.	_	80	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 Also shows the design reinforcement comparison.

Table 1 Comparison of Moments and Flexural Reinforcements

		Reinforcement Area (sq-cm)
Method	Moment (kN-m)	As ⁺
SAFE	312	20.90
Calculated	312	20.90

 $A_{s,min}^{+}$ = 195.00 sq-mm

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\displaystyle rac{A_{v}}{s}$ (sq-cm/m)	
Shear Force (kN)	SAFE	Calculated
156	6.50	6.50

Computer File: BS 8110-97 RCBM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\gamma_{m, \text{ steel}} = 1.15$$

$$\gamma_{m, \text{ concrete}} = 1.50$$

$$A_{s,\min} = 0.0013b_wh$$

$$= 195.00 \text{ sq-mm}$$

COMB80

$$P = (1.4P_d + 1.6P_t) = 156 \text{ kN}$$

 $M^* = \frac{N^*l}{3} = 312 \text{ kN-m}$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu} b_f d^2} = 0.095963 < 0.156$$

Then the moment arm is computed as:

$$z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right\} \le 0.95d = 373.4254 \text{ mm}$$

The depth of the neutral axis is computed as:

$$x = \frac{1}{0.45} (d - z) = 114.6102 \text{ mm}$$

And the depth of the compression block is given by:

 $a = 0.9x = 103.1492 \text{ mm} > h_f$

The ultimate resistance moment of the flange is given by:

$$M_f = \frac{0.67}{\gamma_c} f_{cu} (b_f - b_w) h_f (d - 0.5h_f) = 150.75 \text{ kN-m}$$

The moment taken by the web is computed as:

PROGRAM NAME: REVISION NO.:

 $M_{w} = M - M_{f} = 161.25$ kN-m

and the normalized moment resisted by the web is given by:

$$K_w = \frac{M_w}{f_{cu} b_w d^2} = 0.0991926 < 0.156$$

If $K_w \le 0.156$ (BS 3.4.4.4), the beam is designed as a singly reinforced concrete beam. The reinforcement is calculated as the sum of two parts: one to balance compression in the flange and one to balance compression in the web.

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K_w}{0.9}} \right) \le 0.95d = 371.3988 \text{ mm}$$
$$A_s = \frac{M_f}{\frac{f_y}{\gamma_s} \left(d - 0.5h_f \right)} + \frac{M_w}{\frac{f_y}{\gamma_s} z} = 2090.4 \text{ sq-mm}$$

Shear Design

$$v = \frac{V}{b_w d} \le v_{max} = 1.2235 \text{ MPa}$$

 $v_{max} = \min(0.8 \sqrt{f_{cu}}, 5 \text{ MPa}) = 4.38178 \text{ MPa}$

The shear stress carried by the concrete,
$$v_c$$
, is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = 1.06266, \ 1 \le k_{2} \le \left(\frac{40}{25}\right)^{\frac{1}{3}}$$
$$\gamma_{m} = 1.25$$
$$\frac{100 \ A_{s}}{bd} = 0.15$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1$$

However, the following limitations also apply:

$$0.15 \le \frac{100 A_s}{bd} \le 3$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} \ge 1$$

 $f_{cu} \le 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Given v, v_c , and v_{max} , the required shear reinforcement is calculated as follows:

If
$$v \le (v_c + 0.4)$$

 $A_{sv} = 0.4b_w$

$$\overline{s_v} = \frac{1}{0.87 f_{yv}}$$

If $(v_c + 0.4) < v \le v_{max}$

$$\frac{A_{sv}}{s_v} = \frac{(v - v_c)b_w}{0.87f_{vv}}$$

If $v > v_{\text{max}}$, a failure condition is declared.

(COMB80)

$$P_{d} = 20 \text{ kN}$$

$$P_{l} = 80 \text{ kN}$$

$$V = 156 \text{ kN}$$

$$\frac{A_{sv}}{s_{v}} = \frac{(v - v_{c})b_{w}}{0.87 f_{yv}} = 0.64967 \text{ sq-mm/mm} = 649.67 \text{ sq-mm/mm}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE BS 8110-97 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25-m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f_{cu} of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

	••		ū	u	
SA	FE	2			
0					

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

	Shear Stress	Shear Capacity	D/C ratio
Method	(N/mm²)	(N/mm²)	
SAFE	1.105	0.625	1.77
Calculated	1.105	0.625	1.77

Table 1Comparison of Design Results for Punching
Shear at Grid B-2

Computer File: BS 8110-97 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 2.

u = 954 + 1554 + 954 + 1554 = 5016 mm

Figure 2: Interior Column, Grid B-2 in SAFE Model

From the SAFE output at Grid B-2:

V = 1126.498 kN $M_2 = 51.9908 \text{ kN-m}$ $M_3 = 45.7234 \text{ kN-m}$

PROGRAM NAME: REVISION NO.:

The

SAFE 0

Maximum design shear stress in computed in along major and minor axis of column:

$$v_{eff,x} = \frac{V}{ud} \left(f + \frac{1.5M_x}{Vy} \right)$$
(BS 3.7.7.3)

$$v_{eff,x} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 51.9908 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 954} \right) = 1.1049 \text{ (Govern)}$$

$$v_{eff,y} = \frac{V}{ud} \left(f + \frac{1.5M_y}{Vx} \right)$$

$$v_{eff,y} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 45.7234 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 1554} \right) = 1.0705$$
largest absolute value of $v = 1.1049 \text{ N/mm}^2$

The shear stress carried by the concrete, v_c , is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = \left(\frac{30}{25}\right)^{\frac{1}{3}} = 1.0627 > 1.0 \text{ OK}$$
$$\gamma_{m} = 1.25$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1.16386 > 1 \text{ OK}.$$

 $f_{cu} \leq 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Areas of reinforcement at the face of column for the design strips are as follows:

 A_s in Strip Layer A = 9494.296 mm²

 A_s in Strip Layer B = 8314.486 mm²

PROGRAM NAME:	SAFE
REVISION NO.:	0

Average
$$A_s = (9494.296 + 8314.486)/2 = 8904.391 \text{ mm}^2$$

$$\frac{100 A_s}{bd} = 100 \bullet 8904.391/(8000 \bullet 218) = 0.51057$$

$$v_c = \frac{0.79 \bullet 1.0 \bullet 1.0627}{1.25} \bullet (0.51057)^{1/3} \bullet 1.16386 = 0.6247 \text{ MPa}$$

BS 3.7.7.3 yields the value of $v = 0.625 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{v} = \frac{1.1049}{0.6247} = 1.77$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE BS 8110-97 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m^2 , respectively, are defined in the model. A load combination (COMB5kPa) is defined using the BS 8110-97 load combination factors, 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design was performed using the BS 8110-97 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed by the two methods.

PROGRAM NAME: REVISION NO.: SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n , l_1	=	4000	mm
Concrete strength	f_c	=	30	MPa
Yield strength of steel	fsy	=	460	MPa
Concrete unit weight	W_c	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	$2x10^{6}$	MPa
Poisson's ratio	ν	=	0	
Dead load	Wd	=	4.0	kPa
Live load	Wl	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Lood		Strip Momont	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	As ⁺
Madium	SAFE	27.197	5.853
Medium	Calculated	27.200	5.850

 $A_{s,min}^{+} = 162.5 \text{ sq-mm}$

PROGRAM NAME: SAFE REVISION NO.: 0

COMPUTER FILE: BS 8110-97 RC-SL-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for the load combination:

 $\begin{array}{ll} \gamma_{m, \ steel} &= 1.15\\ \gamma_{m, \ concrete} &= 1.50\\ b &= 1000 \ \mathrm{mm} \end{array}$

For the load combination, *w* and *M* are calculated as follows:

$$w = (1.4w_d + 1.6w_t) b$$
$$M = \frac{wl_1^2}{8}$$
$$A_{s,\min} = 0.0013b_w d$$
$$= 162.5 \text{ sq-mm}$$

COMB100

 $w_d = 4.0 \text{ kPa}$ $w_t = 5.0 \text{ kPa}$ w = 13.6 kN/m $M_{-strip} = 27.2 \text{ kN-m}$ $M_{-design} = 27.2366 \text{ kN-m}$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu}bd^2} = 0.05810 < 0.156$$

The area of tensile steel reinforcement is then given by:

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right) \le 0.95d = 116.3283$$
$$A_s = \frac{M}{0.87f_y z} = 585.046 \text{ sq-mm} > A_{s,\min}$$
$$A_s = 5.850 \text{ sq-cm}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE CSA A23.3-14 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads were added to the slab. The loads and posttensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 KN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the midspan of the slab. Independent hand calculations have been compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	T, 1	<i>i</i> =	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	Wc	=	23.56	KN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	KN/m ²
Live load	Wl	=	4.788	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

PROGRAM NAME:	SAFE
REVISION NO.:	0

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	159.4	159.4	0.00%
Mu (Ultimate) (kN-m)			
Area of Mild Steel req'd, As (sq-cm)	16.25	16.32	0.43%
Transfer Conc. Stress, top (D+PT _I), MPa	-5.058	-5.057	-0.02%
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0.05%
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.06%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), MPa	-7.817	-7.817	0.00%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), MPa	5.759	5.759	0.00%

Table 1 Comparison of Results

COMPUTER FILE: CSA A23.3-14 PT-SL-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: REVISION NO.: SAFE 0

Mild Steel Reinforcing

 $f_{cu} = 30$ MPa

fy = 400 MPa

HAND CALCULATIONS:

Design Parameters:

 $\frac{\text{Post-Tensioning}}{f_{pu} = 1862 \text{ MPa}}$ $\frac{f_{py} = 1675 \text{ MPa}}{f_{py} = 1675 \text{ MPa}}$ Stressing Loss = 186 MPa Long-Term Loss = 94 MPa $f_i = 1490 \text{ MPa}$ $f_e = 1210 \text{ MPa}$

 $\phi_c = 0.65, \ \phi_s = 0.85$ $\alpha_I = 0.85 - 0.0015 f'_c \ge 0.67 = 0.805$ $\beta_I = 0.97 - 0.0025 f'_c \ge 0.67 = 0.895$

Loads:

Dead, self-wt = 0.254 m x 23.56 kN/m³ = 5.984 kN/m² (D) x 1.25 = 7.480 kN/m² (D_u) Live, = $\frac{4.788 \text{ kN/m}^2 \text{ (L) x 1.50} = 7.182 \text{ kN/m}^2 \text{ (L_u)}}{\text{Total} = 10.772 \text{ kN/m}^2 \text{ (D+L)}} = 14.662 \text{ kN/m}^2 \text{ (D+L)ult}$

$$\omega = 10.772 \text{ kN/m}^2 \text{ x } 0.914 \text{m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \text{ x } 0.914 \text{m} = 13.401 \text{ kN/m}$$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 13.401 \text{ x} (9.754)^2/8 = 159.42 \text{ kN-m}$

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

Ultimate Stress in strand,
$$f_{pb} = f_{pe} + \frac{8000}{l_o} (d_p - c_y)$$

$$c_{y} = \frac{\phi_{p}A_{p}f_{pr} + \phi_{s}A_{s}f_{y}}{\alpha_{1}\phi_{c}f'_{c}\beta_{1}b} = \frac{0.9(197)(1347) + 0.85(1625)(400)}{0.805(0.65)(30.0)(0.895)(914)} = 61.66 \text{ mm}$$
$$f_{pb} = 1210 + \frac{8000}{9754}(229 - 61.66) = 1347 \text{ MPa}$$

Depth of the compression block, *a*, is given as:

Stress block depth,
$$a = d - \sqrt{d^2 - \frac{2M^*}{\alpha_1 f'_c \phi_c b}}$$

= $0.229 - \sqrt{0.229^2 - \frac{2(159.42)}{0.805(30000)(0.65)(0.914)}} = 55.18$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197(1347)/1000 = 265.9 \text{ kN}$

Ultimate moment due to PT,

$$M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 265.9 \left(0.229 - \frac{55.18}{2} \right) (0.85) = 45.52 \text{ kN-m}$$

Net Moment to be resisted by As, $M_{NET} = M_U - M_{PT}$ = 159.42 - 45.52 = 113.90 kN-m

The area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M_{NET}}{0.87 f_{y} z} = \frac{113.90}{0.87 (400) \left(229 - \frac{55.18}{2}\right)} (1e6) = 1625 \text{ mm}^{2}$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I

Tendon stress at transfer = jacking stress - stressing losses = 1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN

PROGRAM NAME: REVISION NO.: SAFE 0

Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 257.4(102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ where S = 0.00983m³

> $f = -1.109 \pm 3.948$ MPa f = -5.058(Comp) max, 2.839(Tension) max

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

Long-Term Condition, load combinations: $(D+0.5L+PT_{F(L)}) = 1.0D+0.5L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+0.5L+PT_{F(L)}), $f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-238.9}{0.254(0.914)} \pm \frac{91.06 - 24.33}{0.00983}$ $f = -1.029 \pm 6.788$ $f = -7.817(\text{Comp}) \max, 5.759(\text{Tension}) \max$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE CSA A23.3-14 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by CSA A23.3-14.
- The average shear stress in the beam is below the maximum shear stress allowed by CSA A23.3-14, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL30) and one live load case (LL100) with only symmetric third-point loads of magnitudes 30, and 100 kN, respectively, are defined in the model. One load combinations (COMB100) is defined using the CSA A23.3-14 load combination factors of 1.25 for dead loads and 1.5 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the CSA A23.3-14 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Beam Section

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_c	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	W _c	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	$2x10^{8}$	MPa
Poisson's ratio,	v	=	0.2	
Dead load,	P_d	=	30	kN
Live load	D.	_	100	1-N

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the design reinforcement comparison.

Table 1 Comparison of Moments and Flexural Reinforcements

		Reinforcement Area (sq-cm)	
Method	Moment (kN-m)	As ⁺	
SAFE	375	25.844	
Calculated	375	25.844	

 $A_{s,\min}^{+} = 535.82 \text{ sq-m}$

PROGRAM NAME: REVISION NO.:

onnou	u
SAFE	
0	

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-cm/m)			
Shear Force (kN)	SAFE Calculated			
187.5	12.573	12.573		

Computer File: CSA A23.3-14 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\phi_{c} = 0.65 \text{ for concrete}$$

$$\phi_{s} = 0.85 \text{ for reinforcement}$$

$$A_{s,\min} = \frac{0.2\sqrt{f'_{c}}}{f_{y}} \quad b_{w} \ h = 357.2 \text{ sq-mm}$$

$$\alpha_{I} = 0.85 - 0.0015f'_{c} \ge 0.67 = 0.805$$

$$\beta_{I} = 0.97 - 0.0025f'_{c} \ge 0.67 = 0.895$$

$$c_{b} = \frac{700}{700 + f_{y}} \ d = 256.46 \text{ mm}$$

$$a_{b} = \beta_{I}c_{b} = 229.5366 \text{ mm}$$

$$A_{s} = \min[A_{s,\min}, (4/3) A_{s, required}] = \min[357.2, (4/3)2445] = 357.2 \text{ sq-mm}$$

COMB100

$$P = (1.25P_d + 1.5P_t) = 187.5$$
kN
 $M^* = \frac{Pl}{3} = 375$ kN-m
 $M_f = 375$ kN-m

The depth of the compression block is given by:

$$C_f = \alpha_1 f'_c (b_f - b_w) \min(h_s, a_b) = 724.5 \text{ kN}$$

Therefore, $A_{s1} = \frac{C_f \phi_c}{f_y \phi_s}$ and the portion of M_f that is resisted by the flange is given by:

0

SAFE

PROGRAM NAME: REVISION NO.:

$$A_{s1} = \frac{C_f \phi_c}{f_y \phi_s} = 1204.411 \text{ sq-mm}$$

$$M_{ff} = C_f \left(d - \frac{\min(h_s, a_b)}{2} \right) \phi_c = 176.596 \text{ kN-m}$$

Therefore, the balance of the moment, M_f to be carried by the web is:

 $M_{fw} = M_f - M_{ff} = 198.403$ kN-m

The web is a rectangular section with dimensions b_w and d, for which the design depth of the compression block is recalculated as:

$$a_1 = d - \sqrt{d^2 - \frac{2M_{fw}}{\alpha_1 f'_c \phi_c b_w}} = 114.5745 \text{ mm}$$

If $a_1 \le a_b$, the area of tension reinforcement is then given by:

$$A_{s2} = \frac{M_{fw}}{\phi_s f_y \left(d - \frac{a_1}{2}\right)} = 1379.94 \text{ sq-mm}$$

 $A_s = A_{s1} + A_{s2} = 2584.351$ sq-mm

Shear Design

The basic shear strength for rectangular section is computed as,

 $\phi_c = 0.65$ for shear

 $\lambda = \{1.00, \text{ for normal density concrete}\}$

 d_{ν} is the effective shear depth. It is taken as the greater of 0.9*d* or 0.72*h* = 382.5 mm (governing) or 360 mm.

 $S_{ze} = 300$ if minimum transverse reinforcement

$$\varepsilon_{x} = \frac{M_{f} / d_{v} + V_{f} + 0.5 N_{f}}{2(E_{s}A_{s})} \text{ and } \varepsilon_{x} \le 0.003$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

$$\beta = \frac{0.40}{(1+1500\varepsilon_x)} \bullet \frac{1300}{(1000+S_{ze})} = 0.07272$$

$$V_c = \phi_c \lambda \beta \sqrt{f'_c} b_w d_v = 29.708 \text{ kN}$$

$$V_{r,\max} = 0.25 \phi_c f'_c b_w d = 621.56 \text{ kN}$$

$$\theta = 50$$

$$\frac{A_v}{s} = \frac{(V_f - V_c) \tan \theta}{\phi_s f_{yt} d_v} = 1.2573 \text{ mm}^2/\text{mm} = 12.573 \text{ cm}^2/\text{m}.$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE CSA A23.3-14 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8 m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f'_c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

onnouti
SAFE
0

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Table 1	Co Sh	mparison of De ear at Grid B-2	esign Results for	Punching

Method	Shear Stress (N/mm ²)	Shear Capacity (N/mm ²)	D/C ratio
SAFE	1.792	1.127	1.59
Calculated	1.792	1.127	1.59

COMPUTER FILE: CSA A23.3-14 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 2.

 $b_0 = 518 + 1118 + 1118 + 518 = 3272 \text{ mm}$

Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\gamma_{V2} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{1118}{518}}} = 0.495$$
$$\gamma_{V3} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{518}{1118}}} = 0.312$$

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

PROGRAM NAME: REVISION NO.: SAFE 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
X 2	-259	0	259	0	N.A.
y 2	0	559	0	-559	N.A.
L	1118	518	1118	518	$b_0 = 3272$
d	218	218	218	218	N.A.
Ld	243724	112924	243724	112924	713296
Ldx_2	-63124516	0	63124516	0	0
Ldy_2	0	63124516	0	-63124516	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{713296} = 0 mm$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{713296} = 0 mm$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	1118	518	1118	518	N.A.
d	218	218	218	218	N.A.
$x_2 - x_3$	-259	0	259	0	N.A.
$y_2 - y_3$	0	559	0	-559	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
$I_{\rm XX}$	2.64E+10	3.53E+10	2.64E+10	3.53E+10	1.23E+11
$I_{\rm YY}$	1.63E+10	2.97E+09	1.63E+10	2.97E+09	3.86E+10
I _{XY}	0	0	0	0	0

From the SAFE output at Grid B-2:

 $V_f = 1126.498 \text{ kN}$ $\gamma_{v_2} M_{f,2} = -25.725 \text{ kN-m}$ $\gamma_{v_3} M_{f,3} = 14.272 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

At the point labeled A in Figure 2, $x_4 = -259$ and $y_4 = 559$, thus:

$$v_{f} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} [3.86 \cdot 10^{10} (559 - 0) - (0)(-259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} [1.23 \cdot 10^{11} (-259 - 0) - (0)(559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_f = 1.5793 - 0.1169 - 0.0958 = 1.3666 \text{ N/mm}^2$ at point A

At the point labeled B in Figure 2, $x_4 = 259$ and $y_4 = 559$, thus:

$$v_{f} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} [3.86 \cdot 10^{10} (559 - 0) - (0)(259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} [1.23 \cdot 10^{11} (259 - 0) - (0)(559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_f = 1.5793 - 0.1169 + 0.0958 = 1.5582 \text{ N/mm}^2$ at point B

At the point labeled C in Figure 2, $x_4 = 259$ and $y_4 = -559$, thus: $v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (-559 - 0) - (0)(259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (259 - 0) - (0)(-559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$ $v_f = 1.5793 + 0.1169 + 0.0958 = 1.792 \text{ N/mm}^2 \text{ at point C}$

At the point labeled D in Figure 2, $x_4 = -259$ and $y_4 = -559$, thus: $v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (-559 - 0) - (0)(-259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (-259 - 0) - (0)(-559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$

 $v_f = 1.5793 + 0.1169 - 0.0958 = 1.6004 \text{ N/mm}^2$ at point D

Point C has the largest absolute value of v_u , thus $v_{max} = 1.792 \text{ N/mm}^2$

PROGRAM NAME: REVISION NO.:

The shear capacity is calculated based on the minimum of the following three limits:

$$v_{v} = \min \begin{cases} \phi_{c} \left(1 + \frac{2}{\beta_{c}} \right) 0.19\lambda \sqrt{f'_{c}} \\ \phi_{c} \left(0.19 + \frac{\alpha_{s}d}{b_{0}} \right) \lambda \sqrt{f'_{c}} \\ \phi_{c} 0.38\lambda \sqrt{f'_{c}} \end{cases}$$
 1.127 N/mm² in accordance with CSA 13.3.4.1

CSA 13.3.4.1 yields the smallest value of $v_v = 1.127 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{\varphi v_v} = \frac{1.792}{1.127} = 1.59$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE CSA A23.3-14 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m^2 , respectively, are defined in the model. A load combination (COMB5kPa) is defined using the CSA A23.3-14 load combination factors, 1.25 for dead loads and 1.5 for live loads. The model is analyzed for these load cases and load combinations.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design is performed using the CSA A23.3-14 code by SAFE and also by hand computation. Table 1 show the comparison of the design reinforcements computed using the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n , l_1	=	4000	mm
	C		20	
Concrete strength	f_c	\equiv	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	W_{c}	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	$2x10^{6}$	MPa
Poisson's ratio	ν	=	0	
D - 11 - 1			4.0	1-D-
Dead load	Wd	=	4.0	кра
Live load	w_l	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Lood		Strip Momont	Reinforcement Area (sq-cm)	
Level	Method	(kN-m)	As ⁺	
Modium	SAFE	25.00	5.414	
Medium	Calculated	25.00	5.528	

 $A_{s,min}^{+} = 357.2 \text{ sq-mm}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Computer File: CSA A23.3-14 RC-SL-001.FDB

CONCLUSION

The SAFE results show a very close comparison with the independent results.

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for the load combination:

 $\phi_c = 0.65$ for concrete

 $\phi_s = 0.85$ for reinforcement

$$A_{s,\min} = \frac{0.2\sqrt{f'_c}}{f_y} b_w h = 357.2 \text{ sq-mm}$$

b = 1000 mm

$$\alpha_I = 0.85 - 0.0015 f_c \ge 0.67 = 0.805$$

 $\beta_I = 0.97 - 0.0025 f_c \ge 0.67 = 0.895$

$$c_b = \frac{700}{700 + f_y} d = 75.43 \text{ mm}$$

 $a_b = \beta_1 c_b = 67.5 \text{ mm}$

For the load combination, w and M^* are calculated as follows:

$$w = (1.25w_d + 1.5w_t) b$$

$$M_u = \frac{wl_1^2}{8}$$

$$A_s = \min[A_{s,\min}, (4/3) A_{s,required}] = \min[357.2, (4/3)540.63] = 357.2 \text{ sq-mm}$$

$$= 0.22 \cdot (150/125)^2 \cdot 0.6 \cdot \text{SQRT}(30)/460 \cdot 100 \cdot 125$$

$$= 282.9 \text{ sq-mm}$$

COMB100

$$w_d = 4.0 \text{ kPa}$$

$$w_t = 5.0 \text{ kPa}$$

$$w = 12.5 \text{ kN/m}$$

$$M_{f\text{-strip}} = 25.0 \text{ kN-m}$$

$$M_{f\text{-design}} = 25.529 \text{ kN-m}$$

The depth of the compression block is given by:

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

$$a = d - \sqrt{d^2 - \frac{2|M_f|}{\alpha_1 f'_c \phi_c b}} = 13.769 \text{ mm} < a_{\max}$$

The area of tensile steel reinforcement is then given by:

$$A_s = \frac{M_f}{\phi_s f_y \left(d - \frac{a}{2}\right)} = 552.77 \text{ sq-mm} > A_{s,\min}$$

$$A_s = 5.528$$
 sq-cm

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE CSA A23.3-04 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8 m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f'_c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².
PROGRAM NAME: REVISION NO.:

U				
SA	٩F	Έ		
0				

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Table 1	Comparison of Design Results for Punching
	Shear at Grid B-2

Method	Shear Stress (N/mm ²)	Shear Capacity (N/mm²)	D/C ratio
SAFE	1.792	1.127	1.59
Calculated	1.792	1.127	1.59

COMPUTER FILE: CSA A23.3-04 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 2.

 $b_0 = 518 + 1118 + 1118 + 518 = 3272 \text{ mm}$

Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\gamma_{v_2} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{1118}{518}}} = 0.495$$
$$\gamma_{v_3} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{518}{1118}}} = 0.312$$

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

PROGRAM NAME: REVISION NO.: SAFE 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
X 2	-259	0	259	0	N.A.
y 2	0	559	0	-559	N.A.
L	1118	518	1118	518	$b_0 = 3272$
d	218	218	218	218	N.A.
Ld	243724	112924	243724	112924	713296
Ldx_2	-63124516	0	63124516	0	0
Ldy_2	0	63124516	0	-63124516	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{713296} = 0 mm$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{713296} = 0 mm$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	1118	518	1118	518	N.A.
d	218	218	218	218	N.A.
$x_2 - x_3$	-259	0	259	0	N.A.
$y_2 - y_3$	0	559	0	-559	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
$I_{\rm XX}$	2.64E+10	3.53E+10	2.64E+10	3.53E+10	1.23E+11
$I_{\rm YY}$	1.63E+10	2.97E+09	1.63E+10	2.97E+09	3.86E+10
$I_{\rm XY}$	0	0	0	0	0

From the SAFE output at Grid B-2:

 $V_f = 1126.498 \text{ kN}$ $\gamma_{v_2} M_{f,2} = -25.725 \text{ kN-m}$ $\gamma_{v_3} M_{f,3} = 14.272 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

At the point labeled A in Figure 2, $x_4 = -259$ and $y_4 = 559$, thus:

$$v_{f} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} [3.86 \cdot 10^{10} (559 - 0) - (0)(-259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} [1.23 \cdot 10^{11} (-259 - 0) - (0)(559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_f = 1.5793 - 0.1169 - 0.0958 = 1.3666 \text{ N/mm}^2$ at point A

At the point labeled B in Figure 2, $x_4 = 259$ and $y_4 = 559$, thus:

$$v_{f} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} [3.86 \cdot 10^{10} (559 - 0) - (0)(259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} [1.23 \cdot 10^{11} (259 - 0) - (0)(559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_f = 1.5793 - 0.1169 + 0.0958 = 1.5582 \text{ N/mm}^2$ at point B

At the point labeled C in Figure 2, $x_4 = 259$ and $y_4 = -559$, thus: $v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (-559 - 0) - (0)(259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (259 - 0) - (0)(-559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$ $v_f = 1.5793 + 0.1169 + 0.0958 = 1.792 \text{ N/mm}^2 \text{ at point C}$

At the point labeled D in Figure 2, $x_4 = -259$ and $y_4 = -559$, thus: $v_f = \frac{1126.498 \cdot 10^3}{3272 \cdot 218} - \frac{25.725 \cdot 10^6 [3.86 \cdot 10^{10} (-559 - 0) - (0)(-259 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2} + \frac{14.272 \cdot 10^6 [1.23 \cdot 10^{11} (-259 - 0) - (0)(-559 - 0)]}{(1.23 \cdot 10^{11})(3.86 \cdot 10^{10}) - (0)^2}$

 $v_f = 1.5793 + 0.1169 - 0.0958 = 1.6004 \text{ N/mm}^2$ at point D

Point C has the largest absolute value of v_u , thus $v_{max} = 1.792 \text{ N/mm}^2$

PROGRAM NAME: REVISION NO.:

The shear capacity is calculated based on the minimum of the following three limits:

$$v_{v} = \min \begin{cases} \phi_{c} \left(1 + \frac{2}{\beta_{c}} \right) 0.19\lambda \sqrt{f'_{c}} \\ \phi_{c} \left(0.19 + \frac{\alpha_{s}d}{b_{0}} \right) \lambda \sqrt{f'_{c}} \\ \phi_{c} 0.38\lambda \sqrt{f'_{c}} \end{cases}$$
 1.127 N/mm² in accordance with CSA 13.3.4.1

CSA 13.3.4.1 yields the smallest value of $v_v = 1.127 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{\varphi v_v} = \frac{1.792}{1.127} = 1.59$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE CSA 23.3-04 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads were added to the slab. The loads and posttensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 KN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the midspan of the slab. Independent hand calculations have been compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	T, 1	i =	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	Wc	=	23.56	KN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	KN/m ²
Live load	Wl	=	4.788	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

PROGRAM NAME:	SAFE
REVISION NO.:	0

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	159.4	159.4	0.00%
Mu (Ultimate) (kN-m)			
Area of Mild Steel req'd, As (sq-cm)	16.25	16.32	0.43%
Transfer Conc. Stress, top (D+PT _I), MPa	-5.058	-5.057	0.02%
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0.05%
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.06%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), MPa	-7.817	-7.817	0.00%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), MPa	5.759	5.759	0.00%

Table 1 Comparison of Results

COMPUTER FILE: CSA A23.3-04 PT-SL-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: REVISION NO.: SAFE 0

Mild Steel Reinforcing

 $f_{cu} = 30$ MPa

fy = 400 MPa

HAND CALCULATIONS:

Design Parameters:

 $\frac{\text{Post-Tensioning}}{f_{pu} = 1862 \text{ MPa}}$ $\frac{f_{py} = 1675 \text{ MPa}}{f_{py} = 1675 \text{ MPa}}$ Stressing Loss = 186 MPa Long-Term Loss = 94 MPa $f_i = 1490 \text{ MPa}$ $f_e = 1210 \text{ MPa}$

 $\phi_c = 0.65, \ \phi_s = 0.85$ $\alpha_I = 0.85 - 0.0015 f'_c \ge 0.67 = 0.805$ $\beta_I = 0.97 - 0.0025 f'_c \ge 0.67 = 0.895$

Loads:

Dead, self-wt = 0.254 m x 23.56 kN/m³ = 5.984 kN/m² (D) x 1.25 = 7.480 kN/m² (D_u) Live, = $\frac{4.788 \text{ kN/m}^2 \text{ (L) x 1.50} = 7.182 \text{ kN/m}^2 \text{ (L_u)}}{\text{Total} = 10.772 \text{ kN/m}^2 \text{ (D+L)}} = 14.662 \text{ kN/m}^2 \text{ (D+L)ult}$

$$\omega = 10.772 \text{ kN/m}^2 \text{ x } 0.914 \text{m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \text{ x } 0.914 \text{m} = 13.401 \text{ kN/m}$$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 13.401 \text{ x} (9.754)^2/8 = 159.42 \text{ kN-m}$

PROGRAM NAME:	SAFE
REVISION NO.:	0

Ultimate Stress in strand,
$$f_{pb} = f_{pe} + \frac{8000}{l_o} (d_p - c_y)$$

$$c_{y} = \frac{\phi_{p}A_{p}f_{pr} + \phi_{s}A_{s}f_{y}}{\alpha_{1}\phi_{c}f'_{c}\beta_{1}b} = \frac{0.9(197)(1347) + 0.85(1625)(400)}{0.805(0.65)(30.0)(0.895)(914)} = 61.66 \text{ mm}$$
$$f_{pb} = 1210 + \frac{8000}{9754}(229 - 61.66) = 1347 \text{ MPa}$$

Depth of the compression block, *a*, is given as:

Stress block depth,
$$a = d - \sqrt{d^2 - \frac{2M^*}{\alpha_1 f'_c \phi_c b}}$$

= $0.229 - \sqrt{0.229^2 - \frac{2(159.42)}{0.805(30000)(0.65)(0.914)}} = 55.18$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197(1347)/1000 = 265.9 \text{ kN}$

Ultimate moment due to PT,

$$M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 265.9 \left(0.229 - \frac{55.18}{2} \right) (0.85) = 45.52 \text{ kN-m}$$

Net Moment to be resisted by As, $M_{NET} = M_U - M_{PT}$ = 159.42 - 45.52 = 113.90 kN-m

The area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M_{NET}}{0.87 f_{y} z} = \frac{113.90}{0.87 (400) \left(229 - \frac{55.18}{2}\right)} (1e6) = 1625 \text{ mm}^{2}$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination $(D+PT_i) = 1.0D+0.0L+1.0PT_I$

Tendon stress at transfer = jacking stress - stressing losses = 1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN

PROGRAM NAME: REVISION NO.: SAFE 0

Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 257.4(102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ where S = 0.00983m³

> $f = -1.109 \pm 3.948$ MPa f = -5.058(Comp) max, 2.839(Tension) max

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

Long-Term Condition, load combinations: $(D+0.5L+PT_{F(L)}) = 1.0D+0.5L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+0.5L+PT_{F(L)}), $f = \frac{F_{PTT}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-238.9}{0.254(0.914)} \pm \frac{91.06 - 24.33}{0.00983}$ $f = -1.029 \pm 6.788$

$$f = -7.817$$
(Comp) max, 5.759(Tension) max

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE CSA A23.3-04 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by CSA A23.3-04.
- The average shear stress in the beam is below the maximum shear stress allowed by CSA A23.3-04, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL30) and one live load case (LL100) with only symmetric third-point loads of magnitudes 30, and 100 kN, respectively, are defined in the model. One load combinations (COMB100) is defined using the CSA A23.3-04 load combination factors of 1.25 for dead loads and 1.5 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the CSA A23.3-04 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Beam Section

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	fc	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	W _c	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	$2x10^{8}$	MPa
Poisson's ratio,	V	=	0.2	
Dead load,	P_d	=	30	kN
Live load	P_{I}	=	100	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the design reinforcement comparison.

Table 1 Comparison of Moments and Flexural Reinforcements

		Reinforcement Area (sq-cm)	
Method	Moment (kN-m)	As ⁺	
SAFE	375	25.844	
Calculated	375	25.844	

 $A_{s,\min}^{+} = 535.82 \text{ sq-m}$

PROGRAM NAME: REVISION NO.:

onnou	
SAFE	
0	

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-cm/m)		
Shear Force (kN)	SAFE Calculated		
187.5	12.573	12.573	

Computer File: CSA A23.3-04 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\phi_{c} = 0.65 \text{ for concrete}$$

$$\phi_{s} = 0.85 \text{ for reinforcement}$$

$$A_{s,\min} = \frac{0.2\sqrt{f'_{c}}}{f_{y}} \quad b_{w} \ h = 357.2 \text{ sq-mm}$$

$$\alpha_{I} = 0.85 - 0.0015f'_{c} \ge 0.67 = 0.805$$

$$\beta_{I} = 0.97 - 0.0025f'_{c} \ge 0.67 = 0.895$$

$$c_{b} = \frac{700}{700 + f_{y}} \ d = 256.46 \text{ mm}$$

$$a_{b} = \beta_{I}c_{b} = 229.5366 \text{ mm}$$

$$A_{s} = \min[A_{s,\min}, (4/3) A_{s, required}] = \min[357.2, (4/3)2445] = 357.2 \text{ sq-mm}$$

COMB100

$$P = (1.25P_d + 1.5P_t) = 187.5$$
kN
 $M^* = \frac{Pl}{3} = 375$ kN-m
 $M_f = 375$ kN-m

The depth of the compression block is given by:

$$C_f = \alpha_1 f'_c (b_f - b_w) \min(h_s, a_b) = 724.5 \text{ kN}$$

Therefore, $A_{s1} = \frac{C_f \phi_c}{f_y \phi_s}$ and the portion of M_f that is resisted by the flange is given by:

0

SAFE

PROGRAM NAME: REVISION NO.:

$$A_{s1} = \frac{C_f \phi_c}{f_y \phi_s} = 1204.411 \text{ sq-mm}$$

$$M_{ff} = C_f \left(d - \frac{\min(h_s, a_b)}{2} \right) \phi_c = 176.596 \text{ kN-m}$$

Therefore, the balance of the moment, M_f to be carried by the web is:

 $M_{fw} = M_f - M_{ff} = 198.403$ kN-m

The web is a rectangular section with dimensions b_w and d, for which the design depth of the compression block is recalculated as:

$$a_1 = d - \sqrt{d^2 - \frac{2M_{fw}}{\alpha_1 f'_c \phi_c b_w}} = 114.5745 \text{ mm}$$

If $a_1 \le a_b$, the area of tension reinforcement is then given by:

$$A_{s2} = \frac{M_{fw}}{\phi_s f_y \left(d - \frac{a_1}{2}\right)} = 1379.94 \text{ sq-mm}$$

 $A_s = A_{s1} + A_{s2} = 2584.351$ sq-mm

Shear Design

The basic shear strength for rectangular section is computed as,

 $\phi_c = 0.65$ for shear

 $\lambda = \{1.00, \text{ for normal density concrete}\}$

 d_{ν} is the effective shear depth. It is taken as the greater of 0.9*d* or 0.72*h* = 382.5 mm (governing) or 360 mm.

 $S_{ze} = 300$ if minimum transverse reinforcement

$$\varepsilon_x = \frac{M_f / d_v + V_f + 0.5 N_f}{2(E_s A_s)}$$
 and $\varepsilon_x \le 0.003$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

$$\beta = \frac{0.40}{(1+1500\varepsilon_x)} \bullet \frac{1300}{(1000+S_{ze})} = 0.07272$$

$$V_c = \phi_c \lambda \beta \sqrt{f'_c} b_w d_v = 29.708 \text{ kN}$$

$$V_{r,\max} = 0.25 \phi_c f'_c b_w d = 621.56 \text{ kN}$$

$$\theta = 50$$

$$\frac{A_v}{s} = \frac{(V_f - V_c) \tan \theta}{\phi_s f_{yt} d_v} = 1.2573 \text{ mm}^2/\text{mm} = 12.573 \text{ cm}^2/\text{m}.$$

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

EXAMPLE CSA A23.3-04 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m^2 , respectively, are defined in the model. A load combination (COMB5kPa) is defined using the CSA A23.3-04 load combination factors, 1.25 for dead loads and 1.5 for live loads. The model is analyzed for these load cases and load combinations.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design is performed using the CSA A23.3-04 code by SAFE and also by hand computation. Table 1 show the comparison of the design reinforcements computed using the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n, l_1	=	4000	mm
	C		20	
Concrete strength	f_c	=	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	W_{C}	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	$2x10^{6}$	MPa
Poisson's ratio	ν	=	0	
Deedload		_	4.0	1/Do
Deau Iuau	Wd	—	4.0	кга
Live load	w_l	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Lood	Strip Moment		Reinforcement Area (sq-cm)
Level	Method	(kN-m)	As ⁺
Modium	SAFE	25.00	5.414
Medium	Calculated	25.00	5.528

 $A_{s,min}^{+} = 357.2 \text{ sq-mm}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Computer File: CSA A23.3-04 RC-SL-001.FDB

CONCLUSION

The SAFE results show a very close comparison with the independent results.

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for the load combination:

 $\phi_c = 0.65$ for concrete

 $\phi_s = 0.85$ for reinforcement

$$A_{s,\min} = \frac{0.2\sqrt{f'_c}}{f_y} b_w h = 357.2 \text{ sq-mm}$$

b = 1000 mm

$$\alpha_I = 0.85 - 0.0015 f_c \ge 0.67 = 0.805$$

 $\beta_I = 0.97 - 0.0025 f_c \ge 0.67 = 0.895$

$$c_b = \frac{700}{700 + f_y} d = 75.43 \text{ mm}$$

 $a_b = \beta_1 c_b = 67.5 \text{ mm}$

For the load combination, w and M^* are calculated as follows:

$$w = (1.25w_d + 1.5w_t) b$$

$$M_u = \frac{wl_1^2}{8}$$

$$A_s = \min[A_{s,\min}, (4/3) A_{s,required}] = \min[357.2, (4/3)540.63] = 357.2 \text{ sq-mm}$$

$$= 0.22 \cdot (150/125)^2 \cdot 0.6 \cdot \text{SQRT}(30)/460 \cdot 100 \cdot 125$$

$$= 282.9 \text{ sq-mm}$$

COMB100

$$w_d = 4.0 \text{ kPa}$$

$$w_t = 5.0 \text{ kPa}$$

$$w = 12.5 \text{ kN/m}$$

$$M_{f\text{-strip}} = 25.0 \text{ kN-m}$$

$$M_{f\text{-design}} = 25.529 \text{ kN-m}$$

The depth of the compression block is given by:

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

$$a = d - \sqrt{d^2 - \frac{2|M_f|}{\alpha_1 f'_c \phi_c b}} = 13.769 \text{ mm} < a_{\max}$$

The area of tensile steel reinforcement is then given by:

$$A_s = \frac{M_f}{\phi_s f_y \left(d - \frac{a}{2}\right)} = 552.77 \text{ sq-mm} > A_{s,\min}$$

$$A_s = 5.528$$
 sq-cm

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Eurocode 2-04 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², was added to the A-Strip. The self weight and live loads have been added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, $Live = 4.788 \text{ kN/m}^2$

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
	CI.		20	MD
Concrete strength	f'c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	W_{c}	=	23.56	KN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	KN/m ²
Live load	Wl	=	4.788	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with independent hand calculations.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE	
Factored moment,	166.41	166.41	0.00%	
Mu (Ultimate) (kN-m)				
Transfer Conc. Stress, top (D+PTı), MPa	-5.057	-5.057	0.00%	
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%	
Normal Conc. Stress, top (D+L+PT⊧), MPa	-10.460	-10.465	0.05%	
Normal Conc. Stress, bot (D+L+PT⊧), MPa	8.402	8.407	0.06%	
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), MPa	-7.817	-7.817	0.00%	
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), MPa	5.759	5.759	0.00%	

Table 2 Comparison of Design Moments and Reinforcements

		Decign Moment	Reinforcement Area (sq-cm)
National Annex	Method	(kN-m)	A _s +
CEN Default, Norway,	SAFE	166.41	15.39
Slovenia and Sweden	Calculated	166.41	15.36
Finland Singapore and LIK	SAFE	166.41	15.89
Finland, Singapore and OK	Calculated	166.41	15.87
Donmork	SAFE	166.41	15.96
Deninark	Calculated	166.41	15.94

COMPUTER FILE: EUROCODE 2-04 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.: SAFE 0

HAND CALCULATIONS:

Mild Steel ReinforcingPost-Tensioning $f^{\circ}c = 30$ MPa $f_{pu} = 1862$ MPafy = 400MPa $f_{py} = 1675$ MPaStressing Loss = 186 MPaLong-Term Loss = 94 MPa $f_i = 1490$ MPa $f_e = 1210$ MPa $\gamma_{m, steel} = 1.15$ $\gamma_{m, concrete} = 1.50$ $\eta = 1.0$ for $f_{ck} \le 50$ MPa $\lambda = 0.8$ for $f_{ck} \le 50$ MPa

Loads:

Dead, self-wt = $0.254 \text{ m} \times 23.56 \text{ kN/m}^3 = 5.984 \text{ kN/m}^2 \text{ (D)} \times 1.35 = 8.078 \text{ kN/m}^2 \text{ (D}_u)$ Live, $= \frac{4.788 \text{ kN/m}^2 \text{ (L)} \times 1.50 = 7.182 \text{ kN/m}^2 \text{ (L}_u)}{\text{Total} = 10.772 \text{ kN/m}^2 \text{ (D+L)}} = 15.260 \text{ kN/m}^2 \text{ (D+L)ult}$

$$\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 15.260 \text{ kN/m}^2 \times 0.914 \text{ m} = 13.948 \text{ kN/m}$$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 13.948 \times (9.754)^2 / 8 = 165.9 \text{ kN-m}$

SAFE PROGRAM NAME: 0 **REVISION NO.:**

Ultimate Stress in strand,
$$f_{PS} = f_{SE} + 7000d \left(1 - 1.36 \frac{f_{PU}A_P}{f_{CK}bd} \right) / l$$

= 1210 + 7000(229) $\left(1 - 1.36 \frac{1862(198)}{30(914)(229)} \right) / (9754)$
= 1361 MPa

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(99)(1361)/1000 = 269.5 \text{ kN}$

CEN Default, Norway, Slovenia and Sweden:

Design moment M = 166.4122 kN-m

Compression block depth ratio: $m = \frac{M}{bd^2 \eta f_{cd}}$ 166.4122 = 0.1736_

$$-\frac{1}{(0.914)(0.229)^2(1)(30000/1.50)} = 0.1$$

Required area of mild steel reinforcing,

$$\omega = 1 - \sqrt{1 - 2m} = 1 - \sqrt{1 - 2(0.1736)} = 0.1920$$

$$A_{EquivTotal} = \omega \left(\frac{\eta f_{cd} b d}{f_{yd}}\right) = 0.1920 \left(\frac{1(30/1.5)(914)(229)}{400/1.15}\right) = 2311 \text{ mm}^2$$

$$A_{EquivTotal} = A_p \left(\frac{1361}{400/1.15}\right) + A_s = 2311 \text{ mm}^2$$

$$A_s = 2311 - 198 \left(\frac{1361}{400/1.15}\right) = 1536 \text{ mm}^2$$

Finland, Singapore and UK:

Design moment M = 166.4122 kN-m

Compression block depth ratio: $m = \frac{M}{bd^2 \eta f_{cd}}$ $=\frac{166.4122}{(0.914)(0.229)^2(0.85)(30000/1.50)}$ -=0.2042

Required area of mild steel reinforcing,

 $\omega = 1 - \sqrt{1 - 2m} = 1 - \sqrt{1 - 2(0.2042)} = 0.23088$

PROGRAM NAME: REVISION NO.:

$$A_{EquivTotal} = \omega \left(\frac{\eta f_{cd} b d}{f_{yd}} \right) = 0.23088 \left(\frac{0.85(30/1.5)(914)(229)}{400/1.15} \right) = 2362 \text{ mm}^2$$
$$A_{EquivTotal} = A_P \left(\frac{1361}{400/1.15} \right) + A_S = 2362 \text{ mm}^2$$
$$A_S = 2362 - 198 \left(\frac{1361}{400/1.15} \right) = 1587 \text{ mm}^2$$

Denmark:

Design moment M = 166.4122 kN-m Compression block depth ratio: $m = \frac{M}{bd^2 \eta f_{cd}}$

$$=\frac{166.4122}{(0.914)(0.229)^2(1.0)(30000/1.45)}=0.1678$$

Required area of mild steel reinforcing,

$$\omega = 1 - \sqrt{1 - 2m} = 1 - \sqrt{1 - 2(0.1678)} = 0.1849$$

$$A_{EquivTotal} = \omega \left(\frac{\eta f_{cd} bd}{f_{yd}}\right) = 0.1849 \left(\frac{1.0(30/1.45)(914)(229)}{400/1.20}\right) = 2402 \text{ mm}^2$$

$$A_{EquivTotal} = A_p \left(\frac{1361}{400/1.2}\right) + A_s = 2402 \text{ mm}^2$$

$$A_s = 2402 - 198 \left(\frac{1361}{400/1.2}\right) = 1594 \text{ mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination $(D+PT_i) = 1.0D+0.0L+1.0PT_I$

Tendon stress at transfer = jacking stress - stressing losses =1490 - 186 = 1304 MPa The force in the tendon at transfer = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 257.4(102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTI}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$

PROGRAM NAME:	SAFE
REVISION NO.:	0

where $S = 0.00983m^3$

 $f = -1.109 \pm 3.948$ MPa f = -5.058(Comp) max, 2.839(Tension) max

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term=1490 - 186 - 94 = 1210 MPa The force in tendon at normal = 1210(197.4)/1000 = 238.9 kNMoment due to dead load $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$
$$f = -1.029 \pm 9.431$$
$$f = -10.460 (\text{Comp}) \max, 8.402 (\text{Tension}) \max$$

Long-Term Condition, load combinations: $(D+0.5L+PT_{F(L)}) = 1.0D+0.5L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for $(D+0.5L+PT_{F(L)})$,

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-238.9}{0.254(0.914)} \pm \frac{91.06 - 24.33}{0.00983}$$

f = -1.029 ± 6.788
f = -7.817(Comp) max, 5.759(Tension) max

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE Eurocode 2-04 RC-BM-001 Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by Eurocode 2-04.
- The average shear stress in the beam is below the maximum shear stress allowed by Eurocode 2-04, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading One dead load case (DL30) and one live load case (LL130) with only symmetric third-point loads of magnitudes 30, and 130 kN, respectively, are defined in the model. One load combinations (COMB130) is defined using the Eurocode 2-04 load combination factors of 1.35 for dead loads and 1.5 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the Eurocode 2-04 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Beam Section

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_{ck}	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	$2x10^{8}$	MPa
Poisson's ratio,	v	=	0.2	
Dead load,	P_d	=	30	kN
Live load	D.	_	120	1-NI

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

PROGRAM NAME: REVISION NO.: SAFE 0

Table 1 Comparison of Moments and Flexural Reinforcements

		Moment	Reinforcement Area (sq-cm)
National Annex	Method	(kN-m)	As ⁺
CEN Default, Norway, Slovenia and Sweden	SAFE	471	31.643
	Calculated	471	31.643
Finland , Singapore and UK	SAFE	471	32.98
	Calculated	471	32.98
Denmark	SAFE	471	32.83
	Calculated	471	32.83

 $A_{s,min}^{+}$ = 2.09 sq-cm

Table 2 Comparison of Shear Reinforcements

National Annex	Method	Shear Force (kN)	Reinforcement Area , $\frac{A_v}{s}$ (sq-cm/m)
CEN Default, Norway, Slovenia and Sweden	SAFE	235.5	6.16
	Calculated	235.5	6.16
Finland , Singapore and UK	SAFE	235.5	6.16
	Calculated	235.5	6.16
Denmark	SAFE	235.5	6.42
	Calculated	235.5	6.42

COMPUTER FILE: Eurocode 2-04 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for both of the load combinations:

$$\gamma_s = 1.15$$

$$\gamma_c = 1.50$$

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$$

$$f_{yd} = f_{yk} / \gamma_s$$

$$\eta = 1.0 \text{ for } f_{ck} \le 50 \text{ MPa}$$

$$\lambda = 0.8 \text{ for } f_{ck} \le 50 \text{ MPa}$$

$$A_{s,\min} = 0.26 \frac{f_{ctm}}{f_{yk}} bd = 208.73 \text{ sq-mm}$$

$$A_{s,\min} = 0.0013 b_w h = 195.00 \text{ sq-mm}$$

For CEN Default, Norway, Slovenia and Sweden—COMB130:

 $\gamma_{m, steel} = 1.15$ $\gamma_{m, concrete} = 1.50$ $\alpha_{cc} = 1.0$

The depth of the compression block is given by:

$$m = \frac{M}{bd^2\eta f_{cd}} = \frac{471 \cdot 10^6}{600 \cdot 425^2 \cdot 1.0 \cdot 1.0 \cdot 30/1.5} = 0.217301$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_1 = 0.44$$

 $k_2 = k_4 = 1.25(0.6 + 0.0014/\epsilon_{cu2}) = 1.25$
 δ is assumed to be 1

$$\left(\frac{x}{d}\right)_{\lim} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.448$$

SAFE

0

PROGRAM NAME: REVISION NO.:

$$m_{\rm lim} = \lambda \left(\frac{x}{d}\right)_{\rm lim} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\rm lim}\right] = 0.29417$$

$$\omega_{\rm lim} = \lambda \left(\frac{x}{d}\right)_{\rm lim} = 1 - \sqrt{1 - 2m_{\rm lim}} = 0.3584$$

$$a_{\rm max} = \omega_{\rm lim} d = 152.32 \text{ mm}$$

$$\omega = 1 - \sqrt{1 - 2m} = 0.24807$$

$$a = \omega d = 105.4299 \text{ mm} \le a_{\rm max}$$

$$A_{s2} = \frac{\left(b_f - b_w\right)h_f \eta f_{cd}}{f_{yd}} = 1500 \text{ sq-mm}$$

$$M_2 = A_{s2}f_{yd} \left(d - \frac{h_f}{2}\right) = 225 \text{ kN-m}$$

$$M_1 = M - M_2 = 246 \text{ kN-m}$$

$$m_1 = \frac{M_1}{b_w d^2 \eta f_{cd}} = 0.2269896 \le m_{\rm lim}$$

$$\omega_1 = 1 - \sqrt{1 - 2m_1} = 0.2610678$$

$$A_{s1} = \omega_1 \left[\frac{\eta f_{cd} b_w d}{f_{yd}}\right] = 1664.304 \text{ sq-mm}$$

$$A_s = A_{s1} + A_{s2} = 3164.307 \text{ sq-mm}$$

For Singapore and UK—COMB130:

$$\gamma_{m, steel} = 1.15$$

 $\gamma_{m, concrete} = 1.50$
 $\alpha_{cc} = 0.85$

The depth of the compression block is given by:

$$m = \frac{M}{bd^2\eta f_{cd}} = \frac{471 \cdot 10^6}{600 \cdot 425^2 \cdot 1.0 \cdot 0.85 \cdot 30/1.5} = 0.255648$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_1 = 0.40$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$k_2 = (0.6 + 0.0014/\varepsilon_{cu2}) = 1.00$$

 δ is assumed to be 1

$$\left(\frac{x}{d}\right)_{\text{lim}} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.60$$

$$m_{\text{lim}} = \lambda \left(\frac{x}{d}\right)_{\text{lim}} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\text{lim}}\right] = 0.3648$$

$$\omega_{\text{lim}} = \lambda \left(\frac{x}{d}\right)_{\text{lim}} = 1 - \sqrt{1 - 2m_{\text{lim}}} = 0.48$$

$$a_{\text{max}} = \omega_{\text{lim}} d = 204 \text{ mm}$$

$$\omega = 1 - \sqrt{1 - 2m} = 0.300923$$

$$a = \omega d = 127.8939 \text{ mm} \le a_{\text{max}}$$

$$A_{s2} = \frac{\left(b_f - b_w\right)h_f\eta f_{cd}}{f_{yd}} = 1275 \text{ sq-mm}$$

$$M_2 = A_{s2}f_{yd}\left(d - \frac{h_f}{2}\right) = 191.25 \text{ kN-m}$$

$$M_1 = M - M_2 = 279.75 \text{ kN-m}$$

$$m_1 = \frac{M_1}{b_w d^2\eta f_{cd}} = 0.30368 \le m_{\text{lim}}$$

$$\omega_1 = 1 - \sqrt{1 - 2m_1} = 0.37339$$

$$A_{s1} = \omega_1 \left[\frac{\eta f_{cd} b_w d}{f_{yd}}\right]$$

$$= 0.37339 \left[\frac{1.0 \cdot \frac{0.85 \cdot 30}{1.5} \cdot 300 \cdot 425}{400}\right] = 2023.307 \text{ sq-mm}$$

 $A_s = A_{s1} + A_{s2} = 3298.31$ sq-mm

For Finland—COMB130:

$$\gamma_{m, steel} = 1.15$$

PROGRAM NAME: REVISION NO.:

$$\gamma_{m, concrete} = 1.50$$

 $\alpha_{cc}=0.85$

The depth of the compression block is given by:

$$m = \frac{M}{bd^2 \eta f_{cd}} = \frac{471 \cdot 10^6}{600 \cdot 425^2 \cdot 1.0 \cdot 0.85 \cdot 30/1.5} = 0.255648$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

 $k_1 = 0.44$ $k_2 = 1.10$

 δ is assumed to be 1

$$\left(\frac{x}{d}\right)_{\lim} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.5091$$
$$m_{\lim} = \lambda \left(\frac{x}{d}\right)_{\lim} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\lim}\right] = 0.3243$$
$$\omega_{\lim} = \lambda \left(\frac{x}{d}\right)_{\lim} = 1 - \sqrt{1 - 2m_{\lim}} = 0.40728$$
$$a_{\max} = \omega_{\lim}d = 173.094 \text{ mm}$$
$$\omega = 1 - \sqrt{1 - 2m} = 0.300923$$
$$a = \omega d = 127.8939 \text{ mm} \le a_{\max}$$
$$A_{s2} = \frac{\left(b_f - b_w\right)h_f\eta f_{cd}}{f_{yd}} = 1275 \text{ sq-mm}$$
$$M_2 = A_{s2}f_{yd}\left(d - \frac{h_f}{2}\right) = 191.25 \text{ kN-m}$$
$$m_1 = \frac{M_1}{b_w d^2\eta f_{cd}} = 0.30368 \le m_{\lim}$$
$$\omega_1 = 1 - \sqrt{1 - 2m_1} = 0.37339$$
$$A_{s1} = \omega_1 \left[\frac{\eta f_{cd}b_w d}{f_{yd}}\right]$$

EXAMPLE Eurocode 2-04 RC-BM-001 - 8

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

 $A_s = A_{s1} + A_{s2} = 3298.31$ sq-mm

For Denmark—COMB130:

$$\gamma_{m, steel} = 1.20$$

 $\gamma_{m, concrete} = 1.45$
 $\alpha_{cc} = 1.0$

The depth of the compression block is given by:

$$m = \frac{M}{bd^2\eta f_{cd}} = \frac{471 \cdot 10^6}{600 \cdot 425^2 \cdot 1.0 \cdot 1.0 \cdot 30/1.45} = 0.210058$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_{I} = 0.44$$

$$k_{2} = k_{4} = 1.25(0.6 + 0.0014/\varepsilon_{cu2}) = 1.25$$
 δ is assumed to be 1
$$\left(\frac{x}{d}\right)_{lim} = \frac{\delta - k_{1}}{k_{2}} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.448$$

$$m_{lim} = \lambda \left(\frac{x}{d}\right)_{lim} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{lim}\right] = 0.29417$$
 $\omega_{lim} = \lambda \left(\frac{x}{d}\right)_{lim} = 1 - \sqrt{1 - 2m_{lim}} = 0.3584$
 $a_{max} = \omega_{lim}d = 152.32 \text{ mm}$
 $\omega = 1 - \sqrt{1 - 2m} = 0.238499$
 $a = \omega d = 101.3620 \text{ mm} \le a_{max}$
 $A_{s2} = \frac{(b_{f} - b_{w})h_{f}\eta f_{cd}}{f_{yd}} = 1619.19 \text{ sq-mm}$

PROGRAM NAME: REVISION NO.:

$$M_2 = A_{s2} f_{yd} \left(d - \frac{h_f}{2} \right) = 232.76 \text{ kN-m}$$

$$M_1 = M - M_2 = 238.24$$
 kN-m

$$m_1 = \frac{M_1}{b_w d^2 \eta f_{cd}} = 0.21250 \le m_{\lim}$$

$$\omega_1 = 1 - \sqrt{1 - 2m_1} = 0.241715$$

$$A_{s1} = \omega_{\rm l} \left[\frac{\eta f_{cd} b_{\rm w} d}{f_{yd}} \right] = 1663.37 \text{ sq-mm}$$

$$A_s = A_{s1} + A_{s2} = 3282.56$$
 sq-mm

Shear Design

For CEN Default, Finland, Singapore, Slovenia and UK

$$C_{Rd,c} = 0.18 / \gamma_c = 0.18 / 1.5 = 0.12$$

For Denmark

$$C_{_{Rd,c}} = 0.18 / \gamma_c = 0.18 / 1.45 = 0.124$$

For Sweden and Norway

$$C_{Rd,c} = 0.15/\gamma_c = 0.15/1.5 = 0.10$$

 $k = 1 + \sqrt{\frac{200}{d}} = 1.686 \le 2.0$ with *d* in mm

 $\rho_{l} = 0.0$

$$\sigma_{cp} = N_{Ed} / A_c < 0.2 f_{cd} = 0.0 \text{ MPa}$$

For CEN Default, Denmark, Norway, Singapore, Slovenia, Sweden and UK:

$$v_{\min} = 0.035k^{3/2} f_{ck}^{1/2} = 0.419677$$

For Finland:

$$\nu_{\min} = 0.035k^{2/3} f_{ck}^{1/2} = 0.271561$$
$$V_{Rd,c} = \left[C_{Rd,c} k \left(100 \rho_1 f_{ck} \right)^{1/3} + k_1 \sigma_{cp} \right] b_w d = 34.62 \text{ kN for Finland}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

$$V_{Rd,c} = \left[C_{Rd,c}k(100\rho_{1}f_{ck})^{1/3} + k_{1}\sigma_{cp}\right]b_{w}d = 53.5 \text{ kN for all other NA}$$

$$\alpha_{cw} = 1$$

$$v_{1} = 0.6\left(1 - \frac{f_{ck}}{250}\right) = 0.528$$

$$z = 0.9d = 382.5 \text{ mm}$$

$$\theta \text{ is taken as } 1.$$

$$V_{Rd,max} = \frac{\alpha_{cw}b_{w}zv_{1}f_{cd}}{\cot\theta + \tan\theta} = 1253.54 \text{ kN for Denmark}$$

$$V_{Rd,max} = \frac{\alpha_{cw}b_{w}zv_{1}f_{cd}}{\cot\theta + \tan\theta} = 1211.76 \text{ kN for all other NA}$$

$$V_{R,dc} < V_{Ed} \le V_{Rd,max} \text{ (govern)}$$

Computing the angle using v_{Ed} :

$$v_{Ed} = \frac{235.5 \cdot 10^3}{0.9 \cdot 425 \cdot 300} = 2.0522$$

$$\theta = 0.5 \sin^{-1} \frac{v_{Ed}}{0.2 f_{ck} (1 - f_{ck}/250)}$$

$$\theta = 0.5 \sin^{-1} \frac{2.0522}{0.2 \cdot 30 (1 - 30/250)} = 11.43^{\circ}$$

$$21.8^{\circ} \le \theta \le 45^{\circ}, \text{ therefore use } \theta = 21.8^{\circ}$$

$$\frac{A_{sw}}{s} = \frac{v_{Ed} b_w}{f_{swd} \cot \theta}}$$

$$\frac{A_{sw}}{s} = \frac{2.0522 \cdot 300}{460/1.20 \cdot 2.5} = 0.64243 \text{ sq-mm/m} = 6.42 \text{ sq-cm/m for Denmark}}$$

$$\frac{A_{sw}}{s} = \frac{2.0522 \cdot 300}{460/1.15 \cdot 2.5} = 0.61566 \text{ sq-mm/m} = 6.16 \text{ sq-cm/m for all other NA}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE EUROCODE 2-04 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f'c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

National Annex	Method	Shear Stress (N/mm²)	Shear Capacity (N/mm²)	D/C ratio
CEN Default, Norway,	SAFE	1.100	0.578	1.90
Slovenia and Sweden	Calculated	1.099	0.578	1.90
Finland, Singapore and UK	SAFE	1.100	0.5796	1.90
	Calculated	1.099	0.5796	1.90
Denmark	SAFE	1.100	0.606	1.82
	Calculated	1.099	0.606	1.81

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

COMPUTER FILE: EUROCODE 2-04 RC-PN-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation for Interior Column using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 2.

 $u_1 = u = 2 \bullet 300 + 2 \bullet 900 + 2 \bullet \pi \bullet 436 = 5139.468 \text{ mm}$

Figure 2: Interior Column, Grid B-2 in SAFE Model

From the SAFE output at Grid B-2:

 $V_{Ed} = 1112.197 \text{ kN}$ $k_2M_{Ed2} = 41.593 \text{ kN-m}$ $k_3M_{Ed3} = 20.576 \text{ kN-m}$

PROGRAM NAME: REVISION NO.: SAFE 0

Maximum design shear stress in computed in along major and minor axis of column:

$$\begin{aligned} v_{Ed} &= \frac{V_{Ed}}{ud} \left[1 + \frac{k_2 M_{Ed,2} u_1}{V_{Ed} W_{1,2}} + \frac{k_3 M_{Ed,3} u_1}{V_{Ed} W_{1,3}} \right] \end{aligned} \tag{EC2 6.4.4(2)} \\ W_1 &= \frac{c_1^2}{2} + c_1 c_2 + 4 c_2 d + 16 d^2 + 2 \pi d c_1 \\ W_{1,2} &= \frac{900^2}{2} + 300 \cdot 900 + 4 \cdot 300 \cdot 218 + 16 \cdot 218^2 + 2 \pi \cdot 218 \cdot 900 \\ W_{1,2} &= 2,929,744.957 \text{ mm}^2 \\ W_{1,3} &= 3\frac{900^2}{2} + 900 \cdot 300 + 4 \cdot 900 \cdot 218 + 16 \cdot 218^2 + 2 \pi \cdot 218 \cdot 300 \\ W_{1,2} &= 2,271,104.319 \text{ mm}^2 \\ v_{Ed} &= \frac{V_{Ed}}{u_1 d} \left[1 + \frac{k_2 M_{Ed,2} u_1}{V_{Ed} W_{1,2}} + \frac{k_3 M_{Ed,3} u_1}{V_{Ed} W_{1,3}} \right] \\ v_{Ed} &= \frac{1112.197 \cdot 10^3}{5139.468 \cdot 218} \left[1 + \frac{41.593 \cdot 10^6 \cdot 5139.468}{1112.197 \cdot 10^3 \cdot 2929744.957} + \frac{20.576 \cdot 10^6 \cdot 5139.468}{1112.197 \cdot 10^3 \cdot 2271104.319} \right] \\ v_{Ed} &= 1.099 \text{ N/mm}^2 \end{aligned}$$

Thus $v_{max} = 1.099 \text{ N/mm}^2$

For CEN Default, Finland, Norway, Singapore, Slovenia, Sweden and UK:

$$C_{Rd,c} = 0.18/\gamma_c = 0.18/1.5 = 0.12$$
 (EC2 6.4.4)

For Denmark:

$$C_{Rd,c} = 0.18/\gamma_c = 0.18/1.45 = 0.124$$
 (EC2 6.4.4)

The shear stress carried by the concrete, $V_{Rd,c}$, is calculated as:

$$V_{Rd,c} = \left[C_{Rd,c} k \left(100 \rho_1 f_{ck} \right)^{1/3} + k_1 \sigma_{cp} \right]$$
(EC2 6.4.4)

with a minimum of:

$$v_{Rd,c} = \left(v_{\min} + k_1 \sigma_{cp}\right) \tag{EC2 6.4.4}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0 = 1.9578$$

$$k_{I} = 0.15.$$

$$\rho_{I} = \frac{A_{s1}}{b_{w}d} \le 0.02$$

(EC2 6.4.4(1))

Area of reinforcement at the face of column for design strip are as follows:

For CEN Default, Norway, Slovenia and Sweden: A_s in Strip Layer A = 9204.985 mm² A_s in Strip Layer B = 8078.337 mm² Average $A_s = (9204.985 + 8078.337)/2 = 8641.661 mm²$ $\rho_l = 8641.661/(8000 \cdot 218) = 0.004955 \le 0.02$

For Finland, Singapore and UK: A_s in Strip Layer A = 9319.248 mm² A_s in Strip Layer B = 8174.104 mm² Average $A_s = (9319.248 + 8174.104)/2 = 8746.676 mm²$ $\rho_l = 8746.676/(8000 \cdot 218) = 0.005015 \le 0.02$

For Denmark:

 A_s in Strip Layer A = 9606.651 mm² A_s in Strip Layer B = 8434.444 mm² Average $A_s = (9606.651 + 8434.444)/2 = 9020.548 mm²$ $\rho_l = 9020.548/(8000 \cdot 218) = 0.005172 \le 0.02$

PROGRAM NAME: REVISION NO.:

For CEN Default, Denmark, Norway, Singapore, Slovenia, Sweden and UK:

$$v_{\min} = 0.035k^{3/2} f_{ck}^{1/2} = 0.035(1.9578)^{3/2} (30)^{1/2} = 0.525 \text{ N/mm}^2$$

For Finland:

$$v_{\min} = 0.035k^{2/3} f_{ck}^{1/2} = 0.035(1.9578)^{2/3} (30)^{1/2} = 0.3000 \text{ N/mm}^2$$

For CEN Default, Norway, Slovenia and Sweden:

 $v_{Rd,c} = [0.12 \bullet 1.9578(100 \bullet 0.004955 \bullet 30)^{1/3} + 0] = 0.5777 \text{ N/mm}^2$

For Finland, Singapore, and UK:

 $v_{Rd,c} = \left[0.12 \bullet 1.9578 (100 \bullet 0.005015 \bullet 30)^{1/3} + 0 \right] = 0.5796 \text{ N/mm}^2$

For Denmark:

$$v_{Rd,c} = [0.124 \bullet 1.9578(100 \bullet 0.005015 \bullet 30)^{1/3} + 0] = 0.606 \text{ N/mm}^2$$

For CEN Default, Norway, Slovenia and Sweden:

Shear Ratio = $\frac{v_{\text{max}}}{v_{Rd,c}} = \frac{1.092}{0.5777} = 1.90$	
For Finland, Singapore and UK:	
Shear Ratio = $\frac{v_{\text{max}}}{v_{Rd,c}} = \frac{1.092}{0.5796} = 1.90$	
For Denmark:	
Shear Ratio = $\frac{v_{\text{max}}}{v_{Rd,c}} = \frac{1.092}{0.606} = 1.81$	

PROGRAM NAME:	SAFE		
REVISION NO.:	0		

EXAMPLE Eurocode 2-04 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m^2 , respectively, are defined in the model. A load combination (COMB5kPa) is defined using the Eurocode 2-04 load combination factors, 1.35 for dead loads and 1.5 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. These moments are identical. After completing the analysis, design is performed using the Eurocode 2-04 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed by the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n , l_1	=	4000	mm
Concrete strength	f_{ck}	=	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	Wc	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	$2x10^{6}$	MPa
Poisson's ratio	ν	=	0	
Dead load	Wa	=	4.0	kPa
Live load	Wl	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

		Strip Momont	Reinforcement Area (sq-cm)
National Annex	Method	(kN-m)	A _s +
CEN Default, Norway,	SAFE	25.797	5.400
Slovenia and Sweden	Calculated	25.800	5.400
Finland , Singapore and	SAFE	25.797	5.446
UK	Calculated	25.800	5.446
Denmark	SAFE	25.797	5.626

PROGRAM NAME:SAFEREVISION NO.:0

Calculated	25.800	5.626

 $A_{s,\min}^{+} = 204.642 \text{ sq-mm}$

COMPUTER FILE: Eurocode 2-04 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for the load combination:

 $\eta = 1.0$ for $f_{ck} \le 50$ MPa $\lambda = 0.8$ for $f_{ck} \le 50$ MPa b = 1000 mm

For the load combination, *w* and *M* are calculated as follows:

$$w = (1.35w_d + 1.5w_t) b$$
$$M = \frac{wl_1^2}{8}$$
$$A_{s,\min} = \max \begin{cases} 0.0013b_w d\\ 0.26\frac{f_{ctm}}{f_{yk}} bd \end{cases}$$

= 204.642 sq-mm

COMB100

$$w_d = 4.0 \text{ kPa}$$

$$w_t = 5.0 \text{ kPa}$$

$$w = 12.9 \text{ kN/m}$$

$$M_{-strip} = 25.8 \text{ kN-m}$$

$$M_{-design} = 25.8347 \text{ kN-m}$$

For CEN Default, Norway, Slovenia and Sweden:

$$\gamma_{m, steel} = 1.15$$

 $\gamma_{m, concrete} = 1.50$
 $\alpha_{cc} = 1.0$

The depth of the compression block is given by:

$$m = \frac{M}{bd^2\eta f_{cd}} = \frac{25.8347 \cdot 10^6}{1000 \cdot 125^2 \cdot 1.0 \cdot 1.0 \cdot 30/1.5} = 0.08267$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_{1} = 0.44$$

$$k_{2} = k_{4} = 1.25(0.6 + 0.0014/\varepsilon_{cu2}) = 1.25$$
 δ is assumed to be 1
$$\left(\frac{x}{d}\right)_{\lim} = \frac{\delta - k_{1}}{k_{2}} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.448$$

$$m_{\lim} = \lambda \left(\frac{x}{d}\right)_{\lim} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\lim}\right] = 0.294$$
 $\omega = 1 - \sqrt{1 - 2m} = 0.08640$

$$A_{s} = \omega \left(\frac{\eta f_{cd} b d}{f_{yd}}\right) = 540.024 \text{ sq-mm} > A_{s,\min}$$

$$A_{s} = 5.400 \text{ sq-cm}$$

For Singapore and UK:

$$\gamma_{m, steel} = 1.15$$

 $\gamma_{m, concrete} = 1.50$
 $\alpha_{cc} = 0.85$:

The depth of the compression block is given by:

$$m = \frac{M}{bd^2 \eta f_{cd}} = \frac{25.8347 \cdot 10^6}{1000 \cdot 125^2 \cdot 1.0 \cdot 0.85 \cdot 30/1.5} = 0.097260$$
$$m_{\text{lim}} = \lambda \left(\frac{x}{d}\right)_{\text{lim}} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\text{lim}}\right] = 0.48$$
$$\left(\frac{x}{d}\right)_{\text{lim}} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.60$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_1 = 0.40$$

 $k_2 = (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

PROGRAM NAME: REVISION NO.: SAFE 0

 δ is assumed to be 1

$$\omega = 1 - \sqrt{1 - 2m} = 0.10251$$
$$A_s = \omega \left(\frac{\eta f_{cd} b d}{f_{yd}} \right) = 544.61 \text{ sq-mm} > A_{s,\min}$$
$$A_s = 5.446 \text{ sq-cm}$$

For Finland:

$$\gamma_{m, steel} = 1.15$$

 $\gamma_{m, concrete} = 1.50$
 $\alpha_{cc} = 0.85$:

The depth of the compression block is given by:

$$m = \frac{M}{bd^2 \eta f_{cd}} = \frac{25.8347 \cdot 10^6}{1000 \cdot 125^2 \cdot 1.0 \cdot 0.85 \cdot 30/1.5} = 0.097260$$
$$m_{\text{lim}} = \lambda \left(\frac{x}{d}\right)_{\text{lim}} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\text{lim}}\right] = 032433$$
$$\left(\frac{x}{d}\right)_{\text{lim}} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.5091$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_1 = 0.44$$

 $k_2 = 1.1$
 $k_4 = 1.25(0.6 + 0.0014/\epsilon_{cu2}) = 1.25$

 δ is assumed to be 1

$$\omega = 1 - \sqrt{1 - 2m} = 0.10251$$
$$A_s = \omega \left(\frac{\eta f_{cd} b d}{f_{yd}} \right) = 544.61 \text{ sq-mm} > A_{s,\min}$$

$$A_s = 5.446$$
 sq-cm

PROGRAM NAME:	SAFE
REVISION NO.:	0

For Denmark:

$$\gamma_{m, steel} = 1.20$$

 $\gamma_{m, concrete} = 1.45$
 $\alpha_{cc} = 1.0$

The depth of the compression block is given by:

$$m = \frac{M}{bd^2 \eta f_{cd}} = \frac{25.8347 \cdot 10^6}{1000 \cdot 125^2 \cdot 1.0 \cdot 1.0 \cdot 30/1.5} = 0.0799153$$
$$m_{\rm lim} = \lambda \left(\frac{x}{d}\right)_{\rm lim} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\rm lim}\right] = 0.294$$
$$\left(\frac{x}{d}\right)_{\rm lim} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.448$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_1 = 0.44$$

 $k_2 = k_4 = 1.25(0.6 + 0.0014/\epsilon_{cu2}) = 1.25$

 δ is assumed to be 1

$$\omega = 1 - \sqrt{1 - 2m} = 0.08339$$
$$A_s = \omega \left(\frac{\eta f_{cd} b d}{f_{yd}} \right) = 562.62 \text{ sq-mm} > A_{s,\min}$$

$$A_s = 5.626$$
 sq-cm

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Hong Kong CP-04 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: <u>SAFE</u>0

To ensure one-way action Poisson's ratio is taken to be zero. A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², was added to the A-Strip. The self weight and live loads were added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement and slab stresses are reported at the midspan of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	W_{C}	=	23.56	KN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wa	=	self	KN/m ²
Live load	Wl	=	4.788	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- > Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with independent hand calculations.

PROGRAM NAME: $\underline{S_2}$ REVISION NO.: $\underline{0}$

SAFE 0

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	174.4	174.4	0.00%
Mu (KN-m)			
Area of Mild Steel req'd, As (cm ²)	19.65	19.79	0.35%
Transfer Conc. Stress, top (D+PTı), MPa	-5.056	-5.056	0.00%
Transfer Conc. Stress, bot (D+PT _I), MPa	2.836	2.839	0.11%
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.547	-10.465	0.77%
Normal Conc. Stress, top (D+L+PT _F), MPa	8.323	8.407	1.01%

COMPUTER FILE: HONG KONG CP-04 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{SA} REVISION NO.: $\underline{0}$

SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

Dead, self-wt = $0.254 \text{ m} \times 23.56 \text{ kN/m}^3 = 5.984 \text{ kN/m}^2 \text{ (D)} \times 1.4 = 8.378 \text{ kN/m}^2 \text{ (D}_u)$ Live, $= \frac{4.788 \text{ kN/m}^2 \text{ (L)} \times 1.6 = 7.661 \text{ kN/m}^2 \text{ (L}_u)}{\text{Total} = 10.772 \text{ kN/m}^2 \text{ (D+L)}} = 16.039 \text{ kN/m}^2 \text{ (D+L)ult}$

 $\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \times 0.914 \text{ m} = 14.659 \text{ kN/m}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 14.659 \times (9.754)^2 / 8 = 174.4 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Ultimate Stress in strand,
$$f_{pb} = f_{pe} + \frac{7000}{l/d} \left(1 - 1.7 \frac{f_{pu}A_p}{f_{cu}bd} \right)$$

= $1210 + \frac{7000}{9.754/0.229} \left(1 - 1.7 \frac{1862(198)}{30(914)(229)} \right)$
= $1358 \text{ MPa} \le 0.7 f_{pu} = 1303 \text{ MPa}$

K factor used to determine the effective depth is given as:

$$K = \frac{M}{f_{cu}bd^2} = \frac{174.4}{30000(0.914)(0.229)^2} = 0.1213 < 0.156$$
$$z = d\left(0.5 + \sqrt{0.25 - \frac{K}{0.9}}\right) \le 0.95d = 192.2 \text{ mm}$$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197.4(1303)/1000 = 257.2 \text{ KN}$

Ultimate moment due to PT, $M_{ult,PT} = F_{ult,PT}(z) / \gamma = 257.2(0.192)/1.15 = 43.00$ KN-m

Net Moment to be resisted by As, $M_{NET} = M_U - M_{PT}$ = 174.4 - 43.00 = 131.40 kN-m

The area of tensile steel reinforcement is then given by:

$$A_s = \frac{M}{0.87 f_y z} = \frac{131.40}{0.87(400)(192)} (1e6) = 1965 \,\mathrm{mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I

Tendon stress at transfer = jacking stress – stressing losses = 1490 – 186 = 1304 MPa The force in the tendon at transfer, = 1304(2)(99)/1000 = 258.2 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 258.2(101.6 \text{ mm})/1000 = 26.23$ kN-m Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D}{S} \pm \frac{M_{PT}}{S} = \frac{-258.2}{0.254(0.914)} \pm \frac{65.04}{0.00983} \pm \frac{26.23}{0.00983}$ where S = 0.00983 m³ $f = -1.112 \pm 6.6166 \pm 2.668$ MPa f = -5.060(Comp) max, 2.836(Tension) max

PROGRAM NAME: REVISION NO.: SAFE 0

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(2)(99)/1000 = 239.5 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 239.5(101.6 \text{ mm})/1000 = 24.33 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_D}{S} \pm \frac{M_{PT}}{S} = \frac{-258.2}{0.254(0.914)} \pm \frac{117.08}{0.00983} \pm \frac{24.33}{0.00983}$$

$$f = -1.112 \pm 11.910 \pm 2.475$$

$$f = -10.547(\text{Comp}) \text{ max}, 8.323(\text{Tension}) \text{ max}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE HONG KONG CP-04 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by Hong Kong CP 2004.
- The average shear stress in the beam is below the maximum shear stress allowed by Hong Kong CP 2004, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL20) and one live load case (LL80) with only symmetric third-point loads of magnitudes 20, and 80 kN, respectively, are defined in the model. One load combinations (COMB80) is defined using the Hong Kong CP 2004 load combination factors of 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the Hong Kong CP 2004 code in SAFE and also by hand computation. The design longitudinal reinforcements are compared in Table 1. The design shear reinforcements are compared in Table 2.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Beam Section

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange Thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_c	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	2×10^{8}	MPa
Poisson's ratio,	v	=	0.2	
Dead load,	P_d	=	20	kN
Live load	P_1	=	80	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

Table 1 Comparison of Moments and Flexural Reinforcements

	Momont	Reinforcement Area (sq-cm)
Method	(kN-m)	As ⁺
SAFE	312	20.904
Calculated	312	20.904

 $A_{s,\min}^{+} = 195.00 \text{ sq-mm}$

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $rac{A_v}{s}$ (sq-cm/m)	
Shear Force (kN)	SAFE	Calculated
156	6.50	6.50

COMPUTER FILE: Hong Kong CP-04 RC-BM-001.FDB

CONCLUSION

The SAFE results show an approximate comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\gamma_{m, steel} = 1.15$$

$$\gamma_{m, concrete} = 1.50$$

$$A_{s,min} = 0.0013b_wh$$

$$= 195.00 \text{ sq-mm}$$

COMB80

$$P = (1.4P_d + 1.6P_t) = 156 \text{ kN}$$

 $M^* = \frac{N^*l}{3} = 312 \text{ kN-m}$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu} b_f d^2} = 0.095963 < 0.156$$

Then the moment arm is computed as:

$$z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right\} \le 0.95d = 373.4254 \text{ mm}$$

The depth of the neutral axis is computed as:

$$x = \frac{1}{0.45} (d - z) = 114.6102 \text{ mm}$$

And the depth of the compression block is given by:

 $a = 0.9x = 103.1492 \text{ mm} > h_f$

The ultimate resistance moment of the flange is given by:

$$M_f = \frac{0.67}{\gamma_c} f_{cu} (b_f - b_w) h_f (d - 0.5h_f) = 150.75 \text{ kN-m}$$

PROGRAM NAME: REVISION NO.:

The moment taken by the web is computed as:

 $M_{w} = M - M_{f} = 161.25$ kN-m

and the normalized moment resisted by the web is given by:

$$K_w = \frac{M_w}{f_{cu} b_w d^2} = 0.0991926 < 0.156$$

If $K_w \le 0.156$ (BS 3.4.4.4), the beam is designed as a singly reinforced concrete beam. The reinforcement is calculated as the sum of two parts: one to balance compression in the flange and one to balance compression in the web.

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K_w}{0.9}} \right) \le 0.95d = 371.3988 \text{ mm}$$
$$A_s = \frac{M_f}{\frac{f_y}{\gamma_s} \left(d - 0.5h_f \right)} + \frac{M_w}{\frac{f_y}{\gamma_s} z} = 2090.4 \text{ sq-mm}$$

Shear Design

$$v = \frac{V}{b_w d} \le v_{\text{max}} = 1.2235 \text{ MPa}$$

 $v_{\text{max}} = \min(0.8 \sqrt{f_{cu}}, 5 \text{ MPa}) = 4.38178 \text{ MPa}$

The shear stress carried by the concrete, v_c , is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = 1.06266, \ 1 \le k_{2} \le \left(\frac{40}{25}\right)^{\frac{1}{3}}$$
$$\gamma_{m} = 1.25$$
$$\frac{100 \ A_{s}}{bd} = 0.15$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1$$

However, the following limitations also apply:

$$0.15 \le \frac{100 A_s}{bd} \le 3$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} \ge 1$$

 $f_{cu} \le 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Given v, v_c , and v_{max} , the required shear reinforcement is calculated as follows:

If
$$v \le (v_c + 0.4)$$
,
 $\frac{A_{sv}}{s_v} = \frac{0.4b_w}{0.87 f_{yv}}$
If $(v_c + 0.4) < v \le v_{max}$,
 $\frac{A_{sv}}{s_v} = \frac{(v - v_c)b_w}{0.87 f_{yv}}$

If $v > v_{\text{max}}$, a failure condition is declared.

(COMB80)

$$P_{d} = 20 \text{ kN}$$

$$P_{l} = 80 \text{ kN}$$

$$V = 156 \text{ kN}$$

$$v^{*} = \frac{V^{*}}{b_{w}d} = 2.0 \text{ MPa} \quad (\phi_{s}v_{c} < v^{*} \le \phi_{s}v_{max})$$

$$\frac{A_{sv}}{s_{v}} = \frac{(v - v_{c})b_{w}}{0.87f_{yv}} = 0.64967 \text{ sq-mm/mm} = 6.50 \text{ sq-cm/m}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE Hong Kong CP-04 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f_{cu} of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

		20	
SA	FE		
0			

> Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

MethodShear Stress
(N/mm²)Shear Capacity
D/C ratioSAFE1.1050.6251.77Calculated1.1050.6251.77

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

COMPUTER FILE: HONG KONG CP-04 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 1.

u = 954 + 1554 + 954 + 1554 = 5016 mm

Figure 2: Interior Column, Grid B-2 in SAFE Model

From the SAFE output at Grid B-2:

V= 1126.498 kN M_2 = 51.9908 kN-m M_3 = 45.7234 kN-m

PROGRAM NAME: REVISION NO.: SAFE 0

Maximum design shear stress in computed in along major and minor axis of column:

$$v_{eff,x} = \frac{V}{ud} \left(f + \frac{1.5M_x}{Vy} \right)$$

$$v_{eff,x} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 51.9908 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 954} \right) = 1.1049 \text{ (Govern)}$$

$$v_{eff,y} = \frac{V}{ud} \left(f + \frac{1.5M_y}{Vx} \right)$$

$$v_{eff,y} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 45.7234 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 1554} \right) = 1.0705$$
The largest absolute value of $v = 1.1049 \text{ N/mm}^2$

The shear stress carried by the concrete, v_c , is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = \left(\frac{30}{25}\right)^{\frac{1}{3}} = 1.0627 > 1.0 \text{ OK}$$
$$\gamma_{m} = 1.25$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1.16386 > 1 \text{ OK}.$$

 $f_{cu} \le 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Area of reinforcement at the face of column for design strip are as follows: A_s in Strip Layer A = 9494.296 mm² A_s in Strip Layer B = 8314.486 mm²

PROGRAM NAME:	SAFE
REVISION NO.:	0

Average $A_s = (9494.296 + 8314.486)/2 = 8904.391 \text{ mm}^2$

$$\frac{100 A_s}{bd} = 100 \bullet 8904.391 / (8000 \bullet 218) = 0.51057$$

$$v_c = \frac{0.79 \bullet 1.0 \bullet 1.0627}{1.25} \bullet (0.51057)^{1/3} \bullet 1.16386 = 0.6247 \text{ MPa}$$

BS 3.7.7.3 yields the value of $v = 0.625 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Patio $-\frac{v_U}{v_U}$ -	$\frac{1.1049}{-1.77}$
Shear Ratio $= \frac{1}{v}$	0.6247

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE Hong Kong CP-04 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m², respectively, are defined in the model. A load combination (COMB5kPa) is defined using the Hong Kong CP-04 load combination factors, 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing analysis, design is performed using the Hong Kong CP-04 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed using the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n , l_1	=	4000	mm
Concrete strength	fc	=	30	MPa
Yield strength of steel	f_{sv}	=	460	MPa
Concrete unit weight	Wc	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	2×10^{6}	MPa
Poisson's ratio	ν	=	0	
Dead load	Wd	=	4.0	kPa
Live load	Wl	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Load		Strip Momont	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	A _s +
Madium	SAFE	27.197	5.853
Mealum	Calculated	27.200	5.842

 $A_{s,min}^{+} = 162.5 \text{ sq-mm}$

PROGRAM NAME: SAFE REVISION NO.: 0

COMPUTER FILE: Hong Kong CP-04 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for the load combination:

 $\begin{array}{ll} \gamma_{m, \ steel} &= 1.15 \\ \gamma_{m, \ concrete} &= 1.50 \\ b &= 1000 \ \mathrm{mm} \end{array}$

For the load combination, the *w* and *M* are calculated as follows:

$$w = (1.4w_d + 1.6w_t) b$$
$$M = \frac{wl_1^2}{8}$$
$$A_{s,\min} = 0.0013b_w d$$
$$= 162.5 \text{ sq-mm}$$

COMB100

 $w_d = 4.0 \text{ kPa}$ $w_t = 5.0 \text{ kPa}$ w = 13.6 kN/m $M_{-strip} = 27.2 \text{ kN-m}$ $M_{-design} = 27.2366 \text{ kN-m}$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu}bd^2} = 0.05810 < 0.156$$

The area of tensile steel reinforcement is then given by:

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right) \le 0.95d = 116.3283$$
$$A_s = \frac{M}{0.87f_y z} = 585.046 \text{ sq-mm} > A_{s,\min}$$
$$A_s = 5.850 \text{ sq-cm}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Hong Kong CP-2013 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: <u>SAFE</u>0

To ensure one-way action Poisson's ratio is taken to be zero. A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², was added to the A-Strip. The self weight and live loads were added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement and slab stresses are reported at the midspan of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	fри	=	1862	MPa
Prestressing, effective	fe	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	Ŵc	=	23.56	KN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
			16	UNI /?
Dead load	W_d	=	self	KIN/m ²
Live load	W_l	\equiv	4.788	KN/m^2

TECHNICAL FEATURES OF SAFE TESTED

- > Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with independent hand calculations.

PROGRAM NAME: $\underline{S_2}$ REVISION NO.: $\underline{0}$

SAFE 0

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	174.4	174.4	0.00%
Mu (KN-m)			
Area of Mild Steel req'd, As (cm ²)	19.65	19.79	0.35%
Transfer Conc. Stress, top (D+PTı), MPa	-5.056	-5.056	0.00%
Transfer Conc. Stress, bot (D+PT _I), MPa	2.836	2.839	0.11%
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.547	-10.465	0.77%
Normal Conc. Stress, top (D+L+PT _F), MPa	8.323	8.407	1.01%

COMPUTER FILE: HONG KONG CP-13 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{SA} REVISION NO.: $\underline{0}$

SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

Dead, self-wt = $0.254 \text{ m} \times 23.56 \text{ kN/m}^3 = 5.984 \text{ kN/m}^2 \text{ (D)} \times 1.4 = 8.378 \text{ kN/m}^2 \text{ (D}_u)$ Live, $= \frac{4.788 \text{ kN/m}^2 \text{ (L)} \times 1.6 = 7.661 \text{ kN/m}^2 \text{ (L}_u)}{\text{Total} = 10.772 \text{ kN/m}^2 \text{ (D+L)}} = 16.039 \text{ kN/m}^2 \text{ (D+L)ult}$

 $\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \times 0.914 \text{ m} = 14.659 \text{ kN/m}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 14.659 \times (9.754)^2 / 8 = 174.4 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Ultimate Stress in strand,
$$f_{pb} = f_{pe} + \frac{7000}{l/d} \left(1 - 1.7 \frac{f_{pu}A_p}{f_{cu}bd} \right)$$

= $1210 + \frac{7000}{9.754/0.229} \left(1 - 1.7 \frac{1862(198)}{30(914)(229)} \right)$
= $1358 \text{ MPa} \le 0.7 f_{pu} = 1303 \text{ MPa}$

K factor used to determine the effective depth is given as:

$$K = \frac{M}{f_{cu}bd^2} = \frac{174.4}{30000(0.914)(0.229)^2} = 0.1213 < 0.156$$
$$z = d\left(0.5 + \sqrt{0.25 - \frac{K}{0.9}}\right) \le 0.95d = 192.2 \text{ mm}$$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197.4(1303)/1000 = 257.2 \text{ KN}$

Ultimate moment due to PT, $M_{ult,PT} = F_{ult,PT}(z) / \gamma = 257.2(0.192)/1.15 = 43.00$ KN-m

Net Moment to be resisted by As, $M_{NET} = M_U - M_{PT}$ = 174.4 - 43.00 = 131.40 kN-m

The area of tensile steel reinforcement is then given by:

$$A_s = \frac{M}{0.87 f_y z} = \frac{131.40}{0.87(400)(192)} (1e6) = 1965 \,\mathrm{mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I

Tendon stress at transfer = jacking stress – stressing losses = 1490 – 186 = 1304 MPa The force in the tendon at transfer, = 1304(2)(99)/1000 = 258.2 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 258.2(101.6 \text{ mm})/1000 = 26.23$ kN-m Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D}{S} \pm \frac{M_{PT}}{S} = \frac{-258.2}{0.254(0.914)} \pm \frac{65.04}{0.00983} \pm \frac{26.23}{0.00983}$ where S = 0.00983 m³ $f = -1.112 \pm 6.6166 \pm 2.668$ MPa f = -5.060(Comp) max, 2.836(Tension) max

PROGRAM NAME: REVISION NO.: SAFE 0

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(2)(99)/1000 = 239.5 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 239.5(101.6 \text{ mm})/1000 = 24.33 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_D}{S} \pm \frac{M_{PT}}{S} = \frac{-258.2}{0.254(0.914)} \pm \frac{117.08}{0.00983} \pm \frac{24.33}{0.00983}$$

$$f = -1.112 \pm 11.910 \pm 2.475$$

$$f = -10.547(\text{Comp}) \text{ max}, 8.323(\text{Tension}) \text{ max}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE HONG KONG CP-2013 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by Hong Kong CP 2013.
- The average shear stress in the beam is below the maximum shear stress allowed by Hong Kong CP 2013, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL20) and one live load case (LL80) with only symmetric third-point loads of magnitudes 20, and 80 kN, respectively, are defined in the model. One load combinations (COMB80) is defined using the Hong Kong CP 2013 load combination factors of 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the Hong Kong CP 2013 code in SAFE and also by hand computation. The design longitudinal reinforcements are compared in Table 1. The design shear reinforcements are compared in Table 2.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Beam Section

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange Thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_c	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	2×10^{8}	MPa
Poisson's ratio,	V	=	0.2	
Dead load,	P_d	=	20	kN
Live load	P_1	=	80	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

Table 1 Comparison of Moments and Flexural Reinforcements

	Mamant	Reinforcement Area (sq-cm)	
Method	(kN-m)	As ⁺	
SAFE	312	20.904	
Calculated	312	20.904	

 $A_{s,min}^{+} = 195.00 \text{ sq-mm}$

PROGRAM NAME: REVISION NO.:

ormou	
SAFE	
0	

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-cm/m)		
Shear Force (kN)	SAFE	Calculated	
156	6.50	6.50	

COMPUTER FILE: Hong Kong CP-13 RC-BM-001.FDB

CONCLUSION

The SAFE results show an approximate comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\gamma_{m, steel} = 1.15$$

$$\gamma_{m, concrete} = 1.50$$

$$A_{s,min} = 0.0013b_wh$$

$$= 195.00 \text{ sq-mm}$$

COMB80

$$P = (1.4P_d + 1.6P_t) = 156 \text{ kN}$$

 $M^* = \frac{N^*l}{3} = 312 \text{ kN-m}$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu} b_f d^2} = 0.095963 < 0.156$$

Then the moment arm is computed as:

$$z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right\} \le 0.95d = 373.4254 \text{ mm}$$

The depth of the neutral axis is computed as:

$$x = \frac{1}{0.45} (d - z) = 114.6102 \text{ mm}$$

And the depth of the compression block is given by:

 $a = 0.9x = 103.1492 \text{ mm} > h_f$

The ultimate resistance moment of the flange is given by:

$$M_f = \frac{0.67}{\gamma_c} f_{cu} (b_f - b_w) h_f (d - 0.5h_f) = 150.75 \text{ kN-m}$$

PROGRAM NAME: REVISION NO.:

The moment taken by the web is computed as:

 $M_w = M - M_f = 161.25$ kN-m

and the normalized moment resisted by the web is given by:

$$K_w = \frac{M_w}{f_{cu} b_w d^2} = 0.0991926 < 0.156$$

If $K_w \le 0.156$ (BS 3.4.4.4), the beam is designed as a singly reinforced concrete beam. The reinforcement is calculated as the sum of two parts: one to balance compression in the flange and one to balance compression in the web.

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K_w}{0.9}} \right) \le 0.95d = 371.3988 \text{ mm}$$
$$A_s = \frac{M_f}{\frac{f_y}{\gamma_s} \left(d - 0.5h_f \right)} + \frac{M_w}{\frac{f_y}{\gamma_s} z} = 2090.4 \text{ sq-mm}$$

Shear Design

$$v = \frac{V}{b_w d} \le v_{\text{max}} = 1.2235 \text{ MPa}$$

 $v_{\text{max}} = \min(0.8 \sqrt{f_{cu}}, 5 \text{ MPa}) = 4.38178 \text{ MPa}$

The shear stress carried by the concrete, v_c , is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = 1.06266, \ 1 \le k_{2} \le \left(\frac{40}{25}\right)^{\frac{1}{3}}$$
$$\gamma_{m} = 1.25$$
$$\frac{100 \ A_{s}}{bd} = 0.15$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1$$

However, the following limitations also apply:

$$0.15 \le \frac{100 A_s}{bd} \le 3$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} \ge 1$$

 $f_{cu} \leq 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Given v, v_c , and v_{max} , the required shear reinforcement is calculated as follows:

If
$$v \le (v_c + 0.4)$$
,
 $\frac{A_{sv}}{s_v} = \frac{0.4b_w}{0.87f_{yv}}$
If $(v_c + 0.4) < v \le v_{max}$,
 $\frac{A_{sv}}{s_v} = \frac{(v - v_c)b_w}{0.87f_{yv}}$

If $v > v_{\text{max}}$, a failure condition is declared.

(COMB80)

$$P_{d} = 20 \text{ kN}$$

$$P_{l} = 80 \text{ kN}$$

$$V = 156 \text{ kN}$$

$$v^{*} = \frac{V^{*}}{b_{w}d} = 2.0 \text{ MPa} \quad (\phi_{s}v_{c} < v^{*} \le \phi_{s}v_{max})$$

$$\frac{A_{sv}}{s_{v}} = \frac{(v - v_{c})b_{w}}{0.87f_{yv}} = 0.64967 \text{ sq-mm/mm} = 6.50 \text{ sq-cm/m}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE Hong Kong CP-2013 RC-PN-001 Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f_{cu} of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

			20	
SA	FE	, 1		
0				

> Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

MethodShear Stress
(N/mm²)Shear Capacity
D/C ratioSAFE1.1050.6251.77Calculated1.1050.6251.77

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

COMPUTER FILE: HONG KONG CP-13 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 1.

u = 954 + 1554 + 954 + 1554 = 5016 mm

Figure 2: Interior Column, Grid B-2 in SAFE Model

From the SAFE output at Grid B-2:

V= 1126.498 kN M_2 = 51.9908 kN-m M_3 = 45.7234 kN-m

PROGRAM NAME: REVISION NO.: SAFE 0

Maximum design shear stress in computed in along major and minor axis of column:

$$v_{eff,x} = \frac{V}{ud} \left(f + \frac{1.5M_x}{Vy} \right)$$

$$v_{eff,x} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 51.9908 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 954} \right) = 1.1049 \text{ (Govern)}$$

$$v_{eff,y} = \frac{V}{ud} \left(f + \frac{1.5M_y}{Vx} \right)$$

$$v_{eff,y} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 45.7234 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 1554} \right) = 1.0705$$
The largest absolute value of $v = 1.1049 \text{ N/mm}^2$

The shear stress carried by the concrete, v_c , is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = \left(\frac{30}{25}\right)^{\frac{1}{3}} = 1.0627 > 1.0 \text{ OK}$$
$$\gamma_{m} = 1.25$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1.16386 > 1 \text{ OK}.$$

 $f_{cu} \le 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Area of reinforcement at the face of column for design strip are as follows: A_s in Strip Layer A = 9494.296 mm² A_s in Strip Layer B = 8314.486 mm²

PROGRAM NAME:	SAFE
REVISION NO.:	0

Average $A_s = (9494.296 + 8314.486)/2 = 8904.391 \text{ mm}^2$

$$\frac{100 A_s}{bd} = 100 \bullet 8904.391 / (8000 \bullet 218) = 0.51057$$

$$v_c = \frac{0.79 \bullet 1.0 \bullet 1.0627}{1.25} \bullet (0.51057)^{1/3} \bullet 1.16386 = 0.6247 \text{ MPa}$$

BS 3.7.7.3 yields the value of $v = 0.625 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Patio $-\frac{v_U}{v_U}$	$-\frac{1.1049}{-1.77}$
Shear Ratio $= \frac{1}{v}$	$-\frac{1.77}{0.6247}$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Hong Kong CP-2013 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m², respectively, are defined in the model. A load combination (COMB5kPa) is defined using the Hong Kong CP-04 load combination factors, 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing analysis, design is performed using the Hong Kong CP-04 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed using the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n, l_1	=	4000	mm
	C		20	
Concrete strength	f_c	=	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	W_{c}	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	2×10^{6}	MPa
Poisson's ratio	ν	=	0	
			1.0	1.5
Dead load	Wd	=	4.0	кРа
Live load	Wl	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Lood		Strip Momont	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	A _s +
	SAFE	27.197	5.853
Medium	Calculated	27.200	5.842

 $A_{s,min}^{+} = 162.5 \text{ sq-mm}$

PROGRAM NAME: SAFE REVISION NO.: 0

COMPUTER FILE: Hong Kong CP-13 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for the load combination:

 $\begin{array}{ll} \gamma_{m, \ steel} &= 1.15 \\ \gamma_{m, \ concrete} &= 1.50 \\ b &= 1000 \ \mathrm{mm} \end{array}$

For the load combination, the *w* and *M* are calculated as follows:

$$w = (1.4w_d + 1.6w_t) b$$
$$M = \frac{wl_1^2}{8}$$
$$A_{s,\min} = 0.0013b_w d$$
$$= 162.5 \text{ sq-mm}$$

COMB100

 $w_d = 4.0 \text{ kPa}$ $w_t = 5.0 \text{ kPa}$ w = 13.6 kN/m $M_{-strip} = 27.2 \text{ kN-m}$ $M_{-design} = 27.2366 \text{ kN-m}$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu}bd^2} = 0.05810 < 0.156$$

The area of tensile steel reinforcement is then given by:

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right) \le 0.95d = 116.3283$$
$$A_s = \frac{M}{0.87f_y z} = 585.046 \text{ sq-mm} > A_{s,\min}$$
$$A_s = 5.850 \text{ sq-cm}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE IS 456-00 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in shown in Figure 1.

Figure 1 One-Way Slab

PROGRAM NAME: REVISION NO.: $\frac{\text{SAFE}}{0}$

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads have been added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	W_{c}	=	23.56	kN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	kN/m ²
Live load	Wl	=	4.788	kN/m^2

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

PROGRAM NAME: $\underline{S_2}$ REVISION NO.: $\underline{0}$

SAFE 0

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE	
Factored moment, Mu (Ultimate) (kN-m)	175.6	175.65	0.03%	
Area of Mild Steel req'd, As (sq-cm)	19.53	19.768	1.22%	
Transfer Conc. Stress, top (D+PTı), MPa	-5.058	-5.057	0.02%	
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%	
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0.05%	
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.06%	

Computer File: IS 456-00 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.:

SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

Dead, self-wt = $0.254 \text{ m} \times 23.56 \text{ kN/m}^3 = 5.984 \text{ kN/m}^2 \text{ (D)} \times 1.50 = 8.976 \text{ kN/m}^2 \text{ (D}_u)$ Live, $\frac{= 4.788 \text{ kN/m}^2 \text{ (L)} \times 1.50 = 7.182 \text{ kN/m}^2 \text{ (L}_u)}{\text{Total} = 10.772 \text{ kN/m}^2 \text{ (D+L)} = 16.158 \text{ kN/m}^2 \text{ (D+L)ult}}$

 $\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 16.158 \text{ kN/m}^2 \times 0.914 \text{ m} = 14.768 \text{ kN/m}^2$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 14.768 \times (9.754)^2 / 8 = 175.6 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Ultimate Stress in strand, f_{PS} = from Table 11: f_P = 1435 MPa

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 197.4(1435)/1000 = 283.3 \text{ kN}$

Compression block depth ratio: $m = \frac{M}{bd^2 \alpha f_{ck}}$

$$=\frac{175.6}{(0.914)(0.229)^2(0.36)(30000)}=0.3392$$

Required area of mild steel reinforcing,

$$\frac{x_u}{d} = \frac{1 - \sqrt{1 - 4\beta m}}{2\beta} = \frac{1 - \sqrt{1 - 4(0.42)(0.3392)}}{2(0.42)} = 0.4094 > \frac{x_{u,\text{max}}}{d} = 0.484$$

The area of tensile steel reinforcement is then given by:

$$z = d\left\{1 - \beta \frac{x_u}{d}\right\} = 229 \left(1 - 0.42 (0.4094)\right) = 189.6 \,\mathrm{mm}$$
$$A_{NET} = \frac{M_u}{\left(f_y / \gamma_s\right) z} = \frac{175.6}{(400/1.15)189.6} (1e6) = 2663 \,\mathrm{mm}^2$$
$$A_s = A_{NET} - A_p \left(\frac{f_p}{f_y}\right) = 2663 - 198 \left(\frac{1435}{400}\right) = 1953 \,\mathrm{mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I

Tendon stress at transfer = jacking stress - stressing losses =1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 257.4(102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTT}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ where S=0.00983m³ $f = -1.109 \pm 3.948$ MPa

$$f = -5.058$$
(Comp) max, 2.839(Tension) max

PROGRAM NAME: REVISION NO.: SAFE 0

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term=1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTT}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE IS 456-00 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress block extends below the flange but remains within the balanced condition permitted by IS 456-2000.
- The average shear stress in the beam is below the maximum shear stress allowed by IS 456-2000, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL20) and one live load case (LL80) with only symmetric third-point loads of magnitudes 20, and 80 kN, respectively, are defined in the model. One load combinations (COMB80) is defined using the IS 456-2000 load combination factors of 1.5 for dead loads and 1.5 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. The moment and shear force are identical. After completing the analysis, design is performed using the IS 456-2000 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Beam Section

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange Thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	fc	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	2×10^{8}	MPa
Poisson's ratio,	v	=	0.2	
Dead load,	P_d	=	20	kN
Live load,	P_l	=	80	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

 Table 1 Comparison of Moments and Flexural Reinforcements

	Momont	Reinforcement Area (sq-cm)
Method	(kN-m)	As ⁺
SAFE	312	21.13
Calculated	312	21.13

 $A_{s,min}^{+} = 235.6$ sq-mm

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\displaystyle rac{A_{v}}{s}$ (sq-cm/m)	
Shear Force (kN)	SAFE	Calculated
156	7.76	7.73

Computer File: IS 456-00 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\gamma_{m, steel} = 1.15$$

$$\gamma_{m, concrete} = 1.50$$

$$\alpha = 0.36$$

$$\beta = 0.42$$

$$A_{s,\min} \ge \frac{0.85}{f_y} bd = 235.6 \text{ sq-mm}$$

COMB80

$$P = (1.4P_d + 1.6P_t) = 156 \text{ kN}$$

$$M^* = \frac{N^*l}{3} = 312 \text{ kN-m}$$

$$\frac{x_{u,\text{max}}}{d} = \begin{cases} 0.53 & \text{if} & f_y \le 250 \text{ MPa} \\ 0.53 - 0.05 \frac{f_y - 250}{165} & \text{if} & 250 < f_y \le 415 \text{ MPa} \\ 0.48 - 0.02 \frac{f_y - 415}{85} & \text{if} & 415 < f_y \le 500 \text{ MPa} \\ 0.46 & \text{if} & f_y \ge 500 \text{ MPa} \end{cases}$$

$$\frac{x_{u,\text{max}}}{d} = 0.4666$$

The normalized design moment, m, is given by

$$m = \frac{M_u}{b_f d^2 \alpha f_{ck}}$$

M = 312x10⁶/(600 • 425² • 0.36 • 30) = 0.26656
 $\left(\frac{D_f}{d}\right) = 100/425 = 0.23529$

SAFE

0

PROGRAM NAME: REVISION NO.:

$$\frac{x_u}{d} = \frac{1 - \sqrt{1 - 4\beta m}}{2\beta} = 0.305848 > \left(\frac{D_f}{d}\right)$$

 $\gamma_f = 0.15x_u + 0.65D_f \text{ if } D_f > 0.2d = 84.49781$
 $M_f = 0.45f_{ck}\left(b_f - b_w\right)\gamma_f\left(d - \frac{\gamma_f}{2}\right) = 130.98359 \text{ kN-m}$
 $M_w = M_u - M_f. = 181.0164 \text{ kN-m}$
 $M_{w,\text{single}} = \alpha f_{ck} b_w d^2 \frac{x_{u,\text{max}}}{d} \left[1 - \beta \frac{x_{u,\text{max}}}{d}\right] = 233.233 < M_w$
 $m = \frac{M_w}{b_f d^2 \alpha f_{ck}} = 0.309310$
 $\frac{x_u}{d} = \frac{1 - \sqrt{1 - 4\beta m}}{2\beta} = 0.36538$
 $A_s = \frac{M_f}{(f_y/\gamma_s)(d - 0.5y_f)} + \frac{M_w}{(f_y/\gamma_s)z} = 2113 \text{ sq-mm}$

Shear Design

$$\tau_v = \frac{V_u}{bd} = 1.2235$$

 $\tau_{max} = 3.5$ for M30 concrete

k = 1.0

 $\delta = 1$ if $P_u \leq 0$, Under Tension

$$\frac{100 A_s}{bd} = 0.15 \text{ as } 0.15 \le \frac{100 A_s}{bd} \le 3$$
$$\left(\frac{f_{ck}}{25}\right)^{\frac{1}{4}} = 1.0466$$
$$\tau_c = 0.29 \text{ From Table 19 of IS 456:2000 code}$$
$$\tau_{cd} = k\delta\tau_c = 0.29$$

$$\tau_{cd}$$
 +0.4 = 0.69

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

The required shear reinforcement is calculated as follows:

If $\tau_{cd} + 0.4 < \tau_v \leq \tau_{c,\max}$,

$$\frac{A_{sv}}{s_{v}} \ge \frac{(\tau_{v} - \tau_{cd})b}{0.87 f_{v}} = 7.73 \text{ sq-cm/m}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE IS 456-00 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f'c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

SAI	FE		
0			_

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained in SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Table 1 Comparison of Design Results for PunchingShear at Grid B-2

Method	Shear Stress (N/mm²)	Shear Capacity (N/mm²)	D/C ratio
SAFE	1.792	1.141	1.57
Calculated	1.792	1.141	1.57

Computer File: IS 456-00 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 1.

 $b_0 = 518 + 1118 + 1118 + 518 = 3272 \text{ mm}$

Figure 2: Interior Column, Grid B-2 in SAFE Model

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

PROGRAM NAME: REVISION NO.: SAFE 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
<i>x</i> ₂	-259	0	259	0	N.A.
<i>y</i> 2	0	559	0	-559	N.A.
L	1118	518	1118	518	$b_0 = 3272$
d	218	218	218	218	N.A.
Ld	243724	112924	243724	112924	713296
Ldx_2	-63124516	0	63124516	0	0
Ldy_2	0	63124516	0	-63124516	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{713296} = 0 mm$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{713296} = 0 mm$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	1118	518	1118	518	N.A.
d	218	218	218	218	N.A.
$x_2 - x_3$	-259	0	259	0	N.A.
$y_2 - y_3$	0	559	0	-559	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
$I_{\rm XX}$	2.64E+10	3.53E+10	2.64E+10	3.53E+10	1.23E+11
I _{YY}	1.63E+10	2.97E+09	1.63E+10	2.97E+09	3.86E+10
I _{XY}	0	0	0	0	0

From the SAFE output at Grid B-2:

 $V_U = 1126.498 \text{ kN}$ $\gamma_{V2} M_{U2} = -25.725 \text{ kN-m}$ $\gamma_{V3} M_{U3} = 14.272 \text{ kN-m}$

PROGRAM NAME: SAFE REVISION NO.: 0

At the point labeled A in Figure 2, $x_4 = -259$ and $y_4 = 559$, thus:

$$v_{U} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(559 - 0 \right) - \left(0 \right) \left(-259 - 0 \right) \right]}{\left(1.23 \cdot 10^{11} \right) \left(3.86 \cdot 10^{10} \right) - \left(0 \right)^{2}} + \frac{14.272 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(-259 - 0 \right) - \left(0 \right) \left(559 - 0 \right) \right]}{\left(1.23 \cdot 10^{11} \right) \left(3.86 \cdot 10^{10} \right) - \left(0 \right)^{2}}$$

 $v_U = 1.5793 - 0.1169 - 0.0958 = 1.3666 \text{ N/mm}^2$ at point A

At the point labeled B in Figure 2, $x_4 = 259$ and $y_4 = 559$, thus:

$$v_{U} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(559 - 0 \right) - \left(0 \right) \left(259 - 0 \right) \right]}{\left(1.23 \cdot 10^{11} \right) \left(3.86 \cdot 10^{10} \right) - \left(0 \right)^{2}} + \frac{14.272 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(259 - 0 \right) - \left(0 \right) \left(559 - 0 \right) \right]}{\left(1.23 \cdot 10^{11} \right) \left(3.86 \cdot 10^{10} \right) - \left(0 \right)^{2}}$$

 $v_U = 1.5793 - 0.1169 + 0.0958 = 1.5582 \text{ N/mm}^2$ at point B

At the point labeled C in Figure 2, $x_4 = 259$ and $y_4 = -559$, thus:

$$v_{U} = \frac{1126.498 \bullet 10^{3}}{3272 \bullet 218} - \frac{25.725 \bullet 10^{6} \left[3.86 \bullet 10^{10} \left(-559 - 0 \right) - (0) \left(259 - 0 \right) \right]}{(1.23 \bullet 10^{11}) (3.86 \bullet 10^{10}) - (0)^{2}} + \frac{14.272 \bullet 10^{6} \left[1.23 \bullet 10^{11} \left(259 - 0 \right) - (0) \left(-559 - 0 \right) \right]}{(1.23 \bullet 10^{11}) (3.86 \bullet 10^{10}) - (0)^{2}}$$

 $v_U = 1.5793 + 0.1169 + 0.0958 = 1.792 \text{ N/mm}^2$ at point C

At the point labeled D in Figure 2, $x_4 = -259$ and $y_4 = -559$, thus:

$$vv = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(-559 - 0 \right) - (0) \left(-259 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(-259 - 0 \right) - (0) \left(-559 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_U = 1.5793 + 0.1169 - 0.0958 = 1.6004 \text{ N/mm}^2$ at point D

Point C has the largest absolute value of v_u , thus $v_{max} = 1.792 \text{ N/mm}^2$

PROGRAM NAME: REVISION NO.:

CAEE	
SALE	
0	
0	
<u> </u>	

The shear capacity is calculated based on the minimum of the following three limits:

$$k_s = 0.5 + \beta_c \le 1.0 = 0.833 \tag{IS 31.6.3.1}$$

$$\tau_c = 0.25 = 1.127 \text{ N/mm}^2 \tag{IS 31.6.3.1}$$

$$v_c = k_s \tau_c = 1.141 \text{ N/mm}^2$$
 (IS 31.6.3.1)

CSA 13.3.4.1 yields the smallest value of $v_c = 1.141 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio =
$$\frac{v_U}{v_c} = \frac{1.792}{1.141} = 1.57$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE IS 456-00 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m², respectively, are defined in the model. A load combination (COMB5kPa) is defined using the IS 456-00 load combination factors, 1.5 for dead loads and 1.5 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing analysis, design was performed using the IS 456-00 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed using the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n, l_1	=	4000	mm
Concrete strength	f_c	=	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	Wc	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	2×10^{6}	MPa
Poisson's ratio	ν	=	0	
Dead load	Wd	=	4.0	kPa
Live load	Wl	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

		Strip	Reinforcemen	t Area (sq-cm)
Load Level	Method	Moment (kN-m)	A _s +	As ⁻
	SAFE	26.997	5.830	
Medium	Calculated	27.000	5.830	

 $A_{s,\min}^{+} = 230.978 \text{ sq-mm}$

SAFE PROGRAM NAME: 0 **REVISION NO.:**

Computer File: IS 456-00 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

COMPUTERS & STRUCTURES INC

Software Verification

PROGRAM NAME: REVISION NO.:

CAEE	
SALE	
0	
0	
0	

HAND CALCULATION

The following quantities are computed for the load combination:

 $\gamma_s = 1.15$ $\gamma_c = 1.50$ $\alpha = 0.36$ $\beta = 0.42$ b = 1000 mm

For the load combination, *w* and *M* are calculated as follows:

$$w = (1.5w_d + 1.5w_l) b$$
$$M = \frac{wl_1^2}{8}$$
$$A_{s,\min} = \frac{0.85}{f_y} bd$$
$$= 230.978 \text{ sq-mm}$$

COMB100

$$w_d = 4.0 \text{ kPa}$$

$$w_t = 5.0 \text{ kPa}$$

$$w = 13.5 \text{ kN/m}$$

$$M_{-strip} = 27.0 \text{ kN-m}$$

M-design = 27.0363 kN-m

$$\frac{x_{u,\max}}{d} = \begin{cases} 0.53 & \text{if} \qquad f_y \le 250 \text{ MPa} \\ 0.53 - 0.05 \frac{f_y - 250}{165} & \text{if} \qquad 250 < f_y \le 415 \text{ MPa} \\ 0.48 - 0.02 \frac{f_y - 415}{85} & \text{if} \qquad 415 < f_y \le 500 \text{ MPa} \\ 0.46 & \text{if} \qquad f_y \ge 500 \text{ MPa} \end{cases}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$\frac{x_{u,\max}}{d} = 0.466$$

The depth of the compression block is given by:

$$m = \frac{M_u}{bd^2 \alpha f_{ck}}$$
$$= 0.16$$
$$\frac{x_u}{d} = \frac{1 - \sqrt{1 - 4\beta m}}{2\beta} = 0.1727488 < \frac{x_{u,\max}}{d}$$

The area of tensile steel reinforcement is given by:

$$z = d \left\{ 1 - \beta \frac{x_u}{d} \right\}. = 115.9307 \text{ mm}$$
$$A_s = \frac{M_u}{\left(f_y / \gamma_s \right) z}, = 583.027 \text{ sq-mm} > A_{s,\min}$$
$$A_s = 5.830 \text{ sq-cm}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Italian NTC 2008 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm as shown in shown in Figure 1.

Figure 1 One-Way Slab

PROGRAM NAME: REVISION NO.: SAFE 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², was added to the A-Strip. The self weight and live loads have been added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, $Live = 4.788 \text{ kN/m}^2$

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
	CI.		20	MD
Concrete strength	f'c	=	30	MPa
Yield strength of steel	f_y	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	W_{c}	=	23.56	KN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	KN/m ²
Live load	wı	=	4.788	KN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with independent hand calculations.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT SAFE RESULTS RESULTS		DIFFERENCE
Factored moment,	165.9	165.9	0.00%
Transfer Conc. Stress, top (D+PTı), MPa	-5.057	-5.057	0.00%
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%
Normal Conc. Stress, top (D+L+PT⊧), MPa	-10.460	-10.465	0.05%
Normal Conc. Stress, bot (D+L+PT⊧), MPa	8.402	8.407	0.06%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), MPa	-7.817	-7.817	0.00%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), MPa	5.759	5.759	0.00%

Table 2 Comparison of Design Moments and Reinforcements

		Reinforcement Area (sq-cn	
Method	Design Moment (kN-m)	A _s +	
SAFE	165.9	16.39	
Calculated	165.9	16.29	

COMPUTER FILE: ITALIAN NTC 2008 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.: SAFE 0

HAND CALCULATIONS:

Mild Steel ReinforcingPost-Tensioningf'c = 30MPa $f_{pu} = 1862$ MPafy = 400MPa $f_{py} = 1675$ MPaStressing Loss = 186 MPaLong-Term Loss = 94 MPa $f_i = 1490$ MPa $f_e = 1210$ MPa $\gamma_{m, steel} = 1.15$ $\gamma_{m, concrete} = 1.50$ $\eta = 1.0$ for $f_{ck} \le 50$ MPa $\lambda = 0.8$ for $f_{ck} \le 50$ MPa

Loads:

Dead, self-wt = $0.254 \text{ m} \times 23.56 \text{ kN/m}^3 = 5.984 \text{ kN/m}^2 \text{ (D)} \times 1.35 = 8.078 \text{ kN/m}^2 \text{ (D}_u)$ Live, $= \frac{4.788 \text{ kN/m}^2 \text{ (L)} \times 1.50 = 7.182 \text{ kN/m}^2 \text{ (L}_u)}{\text{Total} = 10.772 \text{ kN/m}^2 \text{ (D+L)}} = 15.260 \text{ kN/m}^2 \text{ (D+L)ult}$

$$\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 15.260 \text{ kN/m}^2 \times 0.914 \text{ m} = 13.948 \text{ kN/m}$$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 13.948 \times (9.754)^2 / 8 = 165.9 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Ultimate Stress in strand,
$$f_{PS} = f_{SE} + 7000d \left(1 - 1.36 \frac{f_{PU}A_P}{f_{CK}bd} \right) / l$$

= 1210 + 7000(229) $\left(1 - 1.36 \frac{1862(198)}{30(914)(229)} \right) / (9754)$
= 1361 MPa

Ultimate force in PT, $F_{ult,PT} = A_p(f_{PS}) = 2(99)(1361)/1000 = 269.5 \text{ kN}$

Design moment M = 165.9 kN-m

Compression block depth ratio: $m = \frac{M}{bd^2 \eta f_{cd}}$

$$=\frac{165.9}{(0.914)(0.229)^2(1)(30000/1.50)}=0.1731$$

Required area of mild steel reinforcing,

$$\omega = 1 - \sqrt{1 - 2m} = 1 - \sqrt{1 - 2(0.1731)} = 0.1914$$
$$A_{EquivTotal} = \omega \left(\frac{\eta f_{cd}bd}{f_{yd}}\right) = 0.1914 \left(\frac{1(30/1.5)(914)(229)}{400/1.15}\right) = 2303 \text{ mm}^2$$
$$A_{EquivTotal} = A_p \left(\frac{1366}{400}\right) + A_s = 2311 \text{ mm}^2$$
$$A_s = 2303 - 198 \left(\frac{1361}{400}\right) = 1629 \text{ mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I

Tendon stress at transfer = jacking stress - stressing losses =1490 - 186 = 1304 MPa The force in the tendon at transfer = 1304(197.4)/1000 = 257.4 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 257.4(102 \text{ mm})/1000 = 26.25 \text{ kN-m}$ Stress in concrete, $f = \frac{F_{PTI}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ where S = 0.00983m³

PROGRAM NAME: REVISION NO.: SAFE 0

> $f = -1.109 \pm 3.948$ MPa f = -5.058(Comp) max, 2.839(Tension) max

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term=1490 - 186 - 94 = 1210 MPa The force in tendon at normal = 1210(197.4)/1000 = 238.9 kNMoment due to dead load $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

Long-Term Condition, load combinations: $(D+0.5L+PT_{F(L)}) = 1.0D+0.5L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for $(D+0.5L+PT_{F(L)})$,

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-238.9}{0.254(0.914)} \pm \frac{91.06 - 24.33}{0.00983}$$

$$f = -1.029 \pm 6.788$$

$$f = -7.817(\text{Comp}) \text{ max}, 5.759(\text{Tension}) \text{ max}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE Italian NTC 2008 RC-BM-001 Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by Italian NTC 2008.
- The average shear stress in the beam is below the maximum shear stress allowed by Italian NTC 2008, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading One dead load case (DL30) and one live load case (LL130) with only symmetric third-point loads of magnitudes 30, and 130 kN, respectively, are defined in the model. One load combinations (COMB130) is defined using the Italian NTC 2008 load combination factors of 1.35 for dead loads and 1.5 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the Italian NTC 2008 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Beam Section

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_{ck}	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	$2x10^{8}$	MPa
Poisson's ratio,	v	=	0.2	
Dead load,	P_d	=	30	kN
T · 1 1				

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

PROGRAM NAME: REVISION NO.: SAFE 0

Table 1 Comparison of Moments and Flexural Reinforcements

	Moment	Reinforcement Area (sq-cm)
Method	(kN-m)	A _s +
SAFE	471	31.643
Calculated	471	31.643

 $A_{s,min}^{+}$ = 2.09 sq-cm

Table 2 Comparison of Shear Reinforcements

	Shear Force	Reinforcement Area , $rac{A_v}{s}$ (sq-cm/m)
Method	(kN)	As ⁺
SAFE	235.5	6.16
Calculated	235.5	6.16

COMPUTER FILE: Italian NTC 2008 RC-BM-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for both of the load combinations:

$$\gamma_s = 1.15$$

$$\gamma_c = 1.50$$

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$$

$$f_{yd} = f_{yk} / \gamma_s$$

$$\eta = 1.0 \text{ for } f_{ck} \le 50 \text{ MPa}$$

$$\lambda = 0.8 \text{ for } f_{ck} \le 50 \text{ MPa}$$

$$A_{s,\min} = 0.26 \frac{f_{ctm}}{f_{yk}} bd = 208.73 \text{ sq-mm}$$

$$A_{s,\min} = 0.0013 b_w h = 195.00 \text{ sq-mm}$$

$$\gamma_{m, steel} = 1.15$$

 $\gamma_{m, concrete} = 1.50$
 $\alpha_{cc} = 1.0$

The depth of the compression block is given by:

$$m = \frac{M}{bd^2 \eta f_{cd}} = \frac{471 \cdot 10^6}{600 \cdot 425^2 \cdot 1.0 \cdot 1.0 \cdot 30/1.5} = 0.217301$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_1 = 0.44$$

 $k_2 = k_4 = 1.25(0.6 + 0.0014/\epsilon_{cu2}) = 1.25$
 δ is assumed to be 1

$$\left(\frac{x}{d}\right)_{\lim} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.448$$

SAFE

0

PROGRAM NAME: REVISION NO.:

$$m_{\lim} = \lambda \left(\frac{x}{d}\right)_{\lim} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\lim}\right] = 0.29417$$

$$\omega_{\lim} = \lambda \left(\frac{x}{d}\right)_{\lim} = 1 - \sqrt{1 - 2m_{\lim}} = 0.3584$$

$$a_{\max} = \omega_{\lim}d = 152.32 \text{ mm}$$

$$\omega = 1 - \sqrt{1 - 2m} = 0.24807$$

$$a = \omega d = 105.4299 \text{ mm} \le a_{\max}$$

$$A_{s2} = \frac{\left(b_f - b_w\right)h_f\eta f_{cd}}{f_{yd}} = 1500 \text{ sq-mm}$$

$$M_2 = A_{s2}f_{yd}\left(d - \frac{h_f}{2}\right) = 225 \text{ kN-m}$$

$$M_1 = M - M_2 = 246 \text{ kN-m}$$

$$m_1 = \frac{M_1}{b_w d^2\eta f_{cd}} = 0.2269896 \le m_{\lim}$$

$$\omega_1 = 1 - \sqrt{1 - 2m_1} = 0.2610678$$

$$A_{s1} = \omega_1 \left[\frac{\eta f_{cd}b_w d}{f_{yd}}\right] = 1664.304 \text{ sq-mm}$$

$$A_s = A_{s1} + A_{s2} = 3164.307 \text{ sq-mm}$$

Shear Design

$$C_{Rd,c} = 0.18/\gamma_c = 0.18/1.5 = 0.12$$

$$k = 1 + \sqrt{\frac{200}{d}} = 1.686 \le 2.0 \text{ with } d \text{ in mm}$$

$$\rho_l = 0.0$$

$$\sigma_{cp} = N_{Ed} / A_c < 0.2 f_{cd} = 0.0 \text{ MPa}$$

$$\nu_{\min} = 0.035 k^{3/2} f_{ck}^{-1/2} = 0.419677$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$V_{Rd,c} = \left[C_{Rd,c}k\left(100\rho_{1}f_{ck}\right)^{1/3} + k_{1}\sigma_{cp}\right]b_{w}d = 53.5 \text{ kN}$$

$$\alpha_{cw} = 1$$

$$v_{1} = 0.6\left(1 - \frac{f_{ck}}{250}\right) = 0.528$$

$$z = 0.9d = 382.5 \text{ mm}$$

$$\theta \text{ is taken as } 1.$$

$$V_{Rd,max} = \frac{\alpha_{cw}b_{w}zv_{1}f_{cd}}{\cot\theta + \tan\theta} = 1211.76 \text{ kN}$$

$$V_{R,dc} < V_{Ed} \le V_{Rd,max} \text{ (govern)}$$

Computing the angle using v_{Ed} :

$$v_{Ed} = \frac{235.5 \cdot 10^3}{0.9 \cdot 425 \cdot 300} = 2.0522$$

$$\theta = 0.5 \sin^{-1} \frac{v_{Ed}}{0.2 f_{ck} (1 - f_{ck}/250)}$$

$$\theta = 0.5 \sin^{-1} \frac{2.0522}{0.2 \cdot 30 (1 - 30/250)} = 11.43^{\circ}$$

$$21.8^{\circ} \le \theta \le 45^{\circ}, \text{ therefore use } \theta = 21.8^{\circ}$$

$$\frac{A_{sw}}{s} = \frac{v_{Ed} b_w}{f_{ywd} \cot \theta}$$

$$\frac{A_{sw}}{s} = \frac{2.0522 \cdot 300}{460/1.15 \cdot 2.5} = 0.61566 \text{ sq-mm/m} = 6.16 \text{ sq-cm/m}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE Italian NTC 2008 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f'c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

onnou	
SAFE	
0	

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

COMPUTERS & STRUCTURES INC

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (N/mm ²)	Shear Capacity (N/mm ²)	D/C ratio
SAFE	1.100	0.578	1.90
Calculated	1.099	0.578	1.90

COMPUTER FILE: ITALIAN NTC 2008 RC-PN-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation for Interior Column using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 2.

 $u_1 = u = 2 \bullet 300 + 2 \bullet 900 + 2 \bullet \pi \bullet 436 = 5139.468 \text{ mm}$

Figure 2: Interior Column, Grid B-2 in SAFE Model

From the SAFE output at Grid B-2:

 $V_{Ed} = 1112.197 \text{ kN}$ $k_2M_{Ed2} = 41.593 \text{ kN-m}$ $k_3M_{Ed3} = 20.576 \text{ kN-m}$

PROGRAM NAME: REVISION NO.: SAFE 0

Maximum design shear stress in computed in along major and minor axis of column:

$$v_{Ed} = \frac{V_{Ed}}{ud} \left[1 + \frac{k_2 M_{Ed,2} u_1}{V_{Ed} W_{1,2}} + \frac{k_3 M_{Ed,3} u_1}{V_{Ed} W_{1,3}} \right]$$
(EC2 6.4.4(2))

$$W_1 = \frac{c_1^2}{2} + c_1 c_2 + 4 c_2 d + 16 d^2 + 2 \pi d c_1$$

$$W_{1,2} = \frac{900^2}{2} + 300 \cdot 900 + 4 \cdot 300 \cdot 218 + 16 \cdot 218^2 + 2 \pi \cdot 218 \cdot 900$$

$$W_{1,2} = 2,929,744.957 \text{ mm}^2$$

$$W_{1,3} = 3\frac{900^2}{2} + 900 \cdot 300 + 4 \cdot 900 \cdot 218 + 16 \cdot 218^2 + 2 \pi \cdot 218 \cdot 300$$

$$W_{1,2} = 2,271,104.319 \text{ mm}^2$$

$$v_{Ed} = \frac{V_{Ed}}{ud} \left[1 + \frac{k_2 M_{Ed,2} u_1}{V_{Ed} W_{1,2}} + \frac{k_3 M_{Ed,3} u_1}{V_{Ed} W_{1,3}} \right]$$

$$v_{Ed} = \frac{1112.197 \cdot 10^3}{5139.468 \cdot 218} \left[1 + \frac{41.593 \cdot 10^6 \cdot 5139.468}{1112.197 \cdot 10^3 \cdot 2929744.957} + \frac{20.576 \cdot 10^6 \cdot 5139.468}{1112.197 \cdot 10^3 \cdot 2271104.319} \right]$$

Thus $v_{max} = 1.099 \text{ N/mm}^2$

$$C_{Bd,c} = 0.18/\gamma_c = 0.18/1.5 = 0.12$$
 (EC2 6.4.4)

The shear stress carried by the concrete, $V_{Rd,c}$, is calculated as:

$$V_{Rd,c} = \left[C_{Rd,c} k \left(100 \rho_1 f_{ck} \right)^{1/3} + k_1 \sigma_{cp} \right]$$
(EC2 6.4.4)

with a minimum of:

$$v_{Rd,c} = \left(v_{\min} + k_1 \sigma_{cp}\right) \tag{EC2 6.4.4}$$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0 = 1.9578 \tag{EC2 6.4.4(1)}$$

$$k_I = 0.15.$$
 (EC2 6.2.2(1))

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$\rho_l = \frac{A_{s1}}{b_w d} \le 0.02$$

Area of reinforcement at the face of column for design strip are as follows:

$$A_{s} \text{ in Strip Layer A} = 9204.985 \text{ mm}^{2}$$

$$A_{s} \text{ in Strip Layer B} = 8078.337 \text{ mm}^{2}$$

$$A \text{verage } A_{s} = (9204.985 + 8078.337)/2 = 8641.661 \text{ mm}^{2}$$

$$\rho_{l} = 8641.661/(8000 \bullet 218) = 0.004955 \le 0.02$$

$$v_{\min} = 0.035k^{3/2} f_{ck}^{1/2} = 0.035(1.9578)^{3/2} (30)^{1/2} = 0.525 \text{ N/mm}^2$$
$$v_{Rd,c} = \left[0.12 \bullet 1.9578(100 \bullet 0.004955 \bullet 30)^{1/3} + 0 \right] = 0.5777 \text{ N/mm}^2$$

Shear Ratio =	V max _	$\frac{1.099}{1.099} = 1.90$
Shear Rano –	$v_{Rd,c}$	0.5777

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

EXAMPLE Italian NTC 2008 RC-SL-001 Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m^2 , respectively, are defined in the model. A load combination (COMB5kPa) is defined using the Italian NTC 2008 load combination factors, 1.35 for dead loads and 1.5 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. These moments are identical. After completing the analysis, design is performed using the Italian NTC 2008 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed by the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n , l_1	=	4000	mm
Concrete strength	f_{ck}	=	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	W_{C}	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	$2x10^{6}$	MPa
Poisson's ratio	ν	=	0	
Dead load	142.7	_	4.0	₽ D a
Livelood	Wd	_	4.0 5.0	кі a lrDo
Live load	W_l	=	5.0	кра

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1	Comparison	of Design	Moments and	Reinforcements
---------	------------	-----------	-------------	----------------

	Strip Moment (kN-m)	Reinforcement Area (sq-cm)
Method		A _s +
SAFE	25.797	5.400
Calculated	25.800	5.400

 $A_{s,min}^{+} = 204.642 \text{ sq-mm}$

COMPUTER FILE: Italian NTC 2008 RC-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

The following quantities are computed for the load combination:

$$\eta = 1.0$$
 for $f_{ck} \le 50$ MPa
 $\lambda = 0.8$ for $f_{ck} \le 50$ MPa
 $b = 1000$ mm

For the load combination, *w* and *M* are calculated as follows:

$$w = (1.35w_d + 1.5w_t) b$$
$$M = \frac{wl_1^2}{8}$$
$$A_{s,\min} = \max \begin{cases} 0.0013b_w d\\ 0.26\frac{f_{ctm}}{f_{yk}} b d \end{cases}$$

= 204.642 sq-mm

COMB100

$$w_d = 4.0 \text{ kPa}$$

$$w_t = 5.0 \text{ kPa}$$

$$w = 12.9 \text{ kN/m}$$

$$M_{-strip} = 25.8 \text{ kN-m}$$

$$M_{-design} = 25.8347 \text{ kN-m}$$

$$\gamma_{m, steel} = 1.15$$

 $\gamma_{m, concrete} = 1.50$
 $\alpha_{cc} = 0.85$:

The depth of the compression block is given by:

$$m = \frac{M}{bd^2 \eta f_{cd}} = \frac{25.8347 \cdot 10^6}{1000 \cdot 125^2 \cdot 1.0 \cdot 0.85 \cdot 30/1.5} = 0.097260$$
$$m_{\rm lim} = \lambda \left(\frac{x}{d}\right)_{\rm lim} \left[1 - \frac{\lambda}{2} \left(\frac{x}{d}\right)_{\rm lim}\right] = 0.48$$

PROGRAM NAME: REVISION NO.:

$$\left(\frac{x}{d}\right)_{\lim} = \frac{\delta - k_1}{k_2} \text{ for } f_{ck} \le 50 \text{ MPa} = 0.60$$

For reinforcement with $f_{yk} \le 500$ MPa, the following values are used:

$$k_1 = 0.40$$

 $k_2 = (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

 δ is assumed to be 1

$$\omega = 1 - \sqrt{1 - 2m} = 0.10251$$
$$A_s = \omega \left(\frac{\eta f_{cd} b d}{f_{yd}} \right) = 544.61 \text{ sq-mm} > A_{s,\min}$$

 $A_s = 5.446$ sq-cm

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE NZS 3101-06 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 915 mm wide and spans 9754 mm as, shown in shown in Figure 1.

Figure 1 One-Way Slab

PROGRAM NAME: REVISION NO.: SAFE 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads have been added to the slab. The loads and post-tensioning forces are as follows:

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the midspan of the slab. Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
	<i>C</i> I		20	
Concrete strength	f'_c	=	30	MPa
Yield strength of steel	f_y	Ξ	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	A_p	=	198	mm^2
Concrete unit weight	W_c	=	23.56	kN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	kN/m ²
Live load	Wl	=	4.788	kN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads.

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

0

PROGRAM NAME: **REVISION NO.:**

SAFE

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE
Factored moment,	156 12	156 14	0.01%
Mu (Ultimate) (kN-m)	150.12	130.14	0.0170
Area of Mild Steel req'd, As (sq-cm)	14.96	15.08	0.74%
Transfer Conc. Stress, top (D+PTı), MPa	-5.058	-5.057	0.02%
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0.05%
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.06%
Long-Term Conc. Stress, top (D+0.5L+PT _{F(L)}), MPa	-7.817	-7.817	0.00%
Long-Term Conc. Stress, bot (D+0.5L+PT _{F(L)}), MPa	5.759	5.759	0.00%

COMPUTER FILE: NZS 3101-06 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{S} REVISION NO.: $\underline{0}$

SAFE 0

HAND CALCULATIONS:

Design Parameters:

Mild Steel Reinforcing	Post-Tensioning
f'c = 30MPa	$f_{pu} = 1862 \text{ MPa}$
fy = 400MPa	$f_{py} = 1675 \text{ MPa}$
	Stressing Loss $=$ 186 MPa
	Long-Term Loss = 94 MPa
	$f_i = 1490 \text{ MPa}$
	$f_e = 1210 \text{ MPa}$
$\phi_b = 0.85$	
$\alpha_1 = 0.85$ for $f'_c \leq 55$ MP	a
$\beta_1 = 0.85$ for $f'_c \le 30$,	
$c_b = \frac{\varepsilon_c}{\varepsilon_c + f_y / E_s} d = 214.7$	

 $a_{\rm max} = 0.75 \beta_l c_b = 136.8 \text{ mm}$

Loads:

 $\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 14.363 \text{ kN/m}^2 \times 0.914 \text{ m} = 13.128 \text{ kN/m}$

PROGRAM NAME:	SAFE
REVISION NO.:	0

Ultimate Moment,
$$M_U = \frac{wl_1^2}{8} = 13.128 \times (9.754)^2/8 = 156.12 \text{ kN-m}$$

Ultimate Stress in strand, $f_{PS} = f_{SE} + 70 + \frac{f'c}{300\rho_P}$ = $1210 + 70 + \frac{30}{300(0.00095)}$ = $1385 \text{ MPa} \le f_{SE} + 200 = 1410 \text{ MPa}$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(99)(1385)/1000 = 274.23 \text{ kN}$

Stress block depth,
$$a = d - \sqrt{d^2 - \frac{2M^*}{\alpha f'_c \phi b}}$$

= $0.229 - \sqrt{0.229^2 - \frac{2(156.12)}{0.85(30000)(0.85)(0.914)}} (1e3) = 37.48 \text{ mm}$

Ultimate moment due to PT,

$$M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) \phi = 274.23 \left(229 - \frac{37.48}{2} \right) (0.85) / 1000 = 49.01 \text{ kN-m}$$

Net ultimate moment, $M_{exc} = M_{exc} = -\frac{156}{2} (0.85) / 1000 = 107.0 \text{ kN-m}$

Net ultimate moment, $M_{net} = M_U - M_{ult,PT} = 156.1 - 49.10 = 107.0$ kN-m

Required area of mild steel reinforcing,

$$A_{s} = \frac{M_{net}}{\phi f_{y}(d - \frac{a}{2})} = \frac{107.0}{0.85(400000) \left(0.229 - \frac{0.03748}{2}\right)} (1e6) = 1496 \text{ mm}^{2}$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I

Tendon stress at transfer = jacking stress – stressing losses =1490 – 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 257.4(102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTI}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ where S = 0.00983m³

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME: REVISION NO.: SAFE 0

> $f = -1.109 \pm 3.948 MPa$ $f = -5.058(Comp) \max, 2.839(Tension) \max$

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

Long-Term Condition, load combinations: $(D+0.5L+PT_{F(L)}) = 1.0D+0.5L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for $(D+0.5L+PT_{F(L)})$,

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+0.5L} - M_{PT}}{S} = \frac{-238.9}{0.254(0.914)} \pm \frac{91.06 - 24.33}{0.00983}$$

$$f = -1.029 \pm 6.788$$

$$f = -7.817(\text{Comp}) \text{ max}, 5.759(\text{Tension}) \text{ max}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE NZS 3101-06 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by NZS 3101-06.
- The average shear stress in the beam is below the maximum shear stress allowed by NZS 3101-06, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading One dead load case (DL50) and one live load case (LL130) with only symmetric third-point loads of magnitudes 50, and 130 kN, respectively, are defined in the model. One load combinations (COMB130) is defined with the NZS 3101-06 load combination factors of 1.2 for dead loads and 1.5 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the NZS 3101-06 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Beam Section

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange Thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_c	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	W _c	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	$2x10^{8}$	MPa
Poisson's ratio,	V	=	0.2	
Dead load,	P_d	=	50	kN
Live load	D.	_	120	1-NI

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

Table 1 Comparison of Moments and Flexural Reinforcements

	Momont	Reinforcement Area (sq-cm)
Method	(kN-m)	As ⁺
SAFE	510	35.046
Calculated	510	35.046

 $A_{s,\min}^{+}$ = 535.82 sq-m

PROGRAM NAME: REVISION NO.:

onnou	CI.
SAFE	
0	

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-cm/m)		
Shear Force (kN)	SAFE	Calculated	
255	14.962	14.89	

Computer File: NZS 3101-06 RC-BM-001.FDB

CONCLUSION

The SAFE results show an acceptable close comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for the load combination:

$$\phi_{b} = 0.85$$

 $\alpha_{1} = 0.85$ for $f'_{c} \le 55MPa$
 $\beta_{1} = 0.85$ for $f'_{c} \le 30$,
 $c_{b} = \frac{\varepsilon_{c}}{\varepsilon_{c} + f_{y}/E_{s}}d = 240.56 \text{ mm}$
 $a_{\max} = 0.75\beta_{1}c_{b} = 153.36 \text{ mm}$
 $A_{s,\min} = \max \begin{cases} \frac{\sqrt{f'_{c}}}{4f_{y}}A_{c} = 535.82\\ 1.4\frac{A_{c}}{f_{y}} = 136.96 \end{cases}$ sq-mm

= 535.82 sq-mm

COMB130

$$N^* = (1.2N_d + 1.5N_t) = 255 \text{ kN}$$

 $M^* = \frac{N^*l}{3} = 510 \text{ kN-m}$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M^*|}{\alpha_1 f_c \phi_b b_f}} = 105.322 \text{ mm} (a > D_s)$$

The compressive force developed in the concrete alone is given by:

 C_f is given by:

$$C_f = \alpha_1 f'_c \left(b_f - b_w \right) h_f = 765 \text{ kN}$$

0

SAFE

PROGRAM NAME: REVISION NO.:

Therefore, $A_{sl} = \frac{C_f}{f_y}$ and the portion of M^* that is resisted by the flange is given

by:

$$M_{f}^{*} = C_{f} \left(d - \frac{d_{s}}{2} \right) \phi_{b} = 243.84375 \text{ kN-m}$$

 $A_{sl} = \frac{C_{f}}{f_{s}} = 1663.043 \text{ sq-mm}$

Therefore, the balance of the moment, M^* , to be carried by the web is:

 $M_{w}^{*} = M^{*} - M_{f}^{*} = 510 - 243.84375 = 266.15625 \text{ kN-m}$

The web is a rectangular section with dimensions b_w and d, for which the depth of the compression block is recalculated as:

$$a_1 = d - \sqrt{d^2 - \frac{2M_w^*}{\alpha_1 f'_c \phi_b b_w}} = 110.7354 \text{ mm} \le a_{\max}$$

If $a_1 \le a_{\text{max}}$ (NZS 9.3.8.1), the area of tension reinforcement is then given by:

$$A_{s2} = \frac{M_w^*}{\phi_b f_y \left(d - \frac{a_1}{2}\right)} = 1841.577 \text{ sq-mm}$$

 $A_s = A_{s1} + A_{s2} = 3504.62$ sq-mm

Shear Design

The basic shear strength for rectangular section is computed as,

$$v_b = \left[0.07 + 10\frac{A_s}{b_w d}\right]\sqrt{f_c'} = 0.3834$$

 $f'_{c} \le 50$ MPa, and $0.08\sqrt{f'_{c}} = 0.438$ MPa $\le v_{b} \le 0.2\sqrt{f'_{c}} = 1.095$ MPa

$$v_c = k_d k_a v_b = 0.438$$
 where $(k_d = 1.0, k_a = 1.0)$

The average shear stress is limited to a maximum limit of,

$$v_{\text{max}} = \min\{0.2f'_{c}, 8 \text{ MPa}\} = \min\{6, 8\} = 6 \text{ MPa}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

The shear reinforcement is computed as follows:

If $v^* \le \phi_s(v_c/2)$ or $h \le \max(300 \text{ mm}, 0.5b_w)$ $\frac{A_v}{s} = 0$ (NZS 9.3.9.4.13) If $\phi_s(v_c/2) < v^* \leq \phi_s v_c$, $\frac{A_v}{s} = \frac{1}{16} \sqrt{f_c'} \frac{b_w}{f_{vt}}$ (NZS 9.3.9.4.15) If $\phi_s v_c < v^* \leq \phi_s v_{\max}$, (NZS 9.3.9.4.2)

 $\frac{A_v}{s} = \frac{\left(v^* - \phi_s v_c\right)}{\phi_s f_{vt} d}$

If $v^* > v_{\text{max}}$, a failure condition is declared.

For the load combination, the N^* and V^* are calculated as follows:

$$N^* = 1.2N_d + 1.5N_l$$
$$V^* = N^*$$
$$v^* = \frac{V^*}{b_w d}$$

(COMB130)

$$N_{d} = 50 \text{ kips}$$

$$N_{l} = 130 \text{ kips}$$

$$V^{*} = 255 \text{ kN}$$

$$v^{*} = \frac{V^{*}}{b_{w}d} = 2.0 \text{ MPa} \quad (\phi_{s}v_{c} < v^{*} \le \phi_{s}v_{max})$$

$$\frac{A_{v}}{s} = \frac{(v^{*} - \phi_{s}v_{c})b_{w}}{\phi_{s}f_{yt}} = 1.489 \text{ sq-mm/mm} = 1489 \text{ sq-mm/m}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE NZS 3101-06 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8 m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f'c of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

			20	
SA	FE	, 1		
0				

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

MethodShear Stress
(N/mm²)Shear Capacity
(N/mm²)D/C ratioSAFE1.7921.1411.57Calculated1.7921.1411.57

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Computer File: NZS 3101-06 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(259 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 2.

 $b_0 = 518 + 1118 + 1118 + 518 = 3272 \text{ mm}$

Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\gamma_{v_2} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{1118}{518}}} = 0.495$$
$$\gamma_{v_3} = 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{518}{1118}}} = 0.312$$

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

PROGRAM NAME: REVISION NO.: SAFE 0

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear as identified in Figure 2.

Item	Side 1	Side 2	Side 3	Side 4	Sum
<i>x</i> ₂	-259	0	259	0	N.A.
<i>y</i> 2	0	559	0	-559	N.A.
L	1118	518	1118	518	$b_0 = 3272$
d	218	218	218	218	N.A.
Ld	243724	112924	243724	112924	713296
Ldx_2	-63124516	0	63124516	0	0
Ldy_2	0	63124516	0	-63124516	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{713296} = 0 mm$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{713296} = 0 mm$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	1118	518	1118	518	N.A.
d	218	218	218	218	N.A.
$x_2 - x_3$	-259	0	259	0	N.A.
$y_2 - y_3$	0	559	0	-559	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b, 7	5a, 6a, 7	5b, 6b, 7	5a, 6a, 7	N.A.
I _{XX}	2.64E+10	3.53E+10	2.64E+10	3.53E+10	1.23E+11
$I_{\rm YY}$	1.63E+10	2.97E+09	1.63E+10	2.97E+09	3.86E+10
I _{XY}	0	0	0	0	0

From the SAFE output at Grid B-2:

 $V_U = 1126.498 \text{ kN}$ $\gamma_{V2} M_{U2} = -25.725 \text{ kN-m}$ $\gamma_{V3} M_{U3} = 14.272 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

At the point labeled A in Figure 2, $x_4 = -259$ and $y_4 = 559$, thus:

$$v_{U} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(559 - 0 \right) - \left(0 \right) \left(-259 - 0 \right) \right]}{\left(1.23 \cdot 10^{11} \right) \left(3.86 \cdot 10^{10} \right) - \left(0 \right)^{2}} + \frac{14.272 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(-259 - 0 \right) - \left(0 \right) \left(559 - 0 \right) \right]}{\left(1.23 \cdot 10^{11} \right) \left(3.86 \cdot 10^{10} \right) - \left(0 \right)^{2}}$$

 $v_U = 1.5793 - 0.1169 - 0.0958 = 1.3666 \text{ N/mm}^2$ at point A

At the point labeled B in Figure 2, $x_4 = 259$ and $y_4 = 559$, thus:

$$v_{U} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(559 - 0 \right) - (0) \left(259 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(259 - 0 \right) - (0) \left(559 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_U = 1.5793 - 0.1169 + 0.0958 = 1.5582 \text{ N/mm}^2$ at point B

At the point labeled C in Figure 2, $x_4 = 259$ and $y_4 = -559$, thus:

$$v_{U} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(-559 - 0 \right) - (0) \left(259 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(259 - 0 \right) - (0) \left(-559 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_U = 1.5793 + 0.1169 + 0.0958 = 1.792 \text{ N/mm}^2$ at point C

At the point labeled D in Figure 2, $x_4 = -259$ and $y_4 = -559$, thus:

$$vv = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{25.725 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(-559 - 0 \right) - (0) \left(-259 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}} + \frac{14.272 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(-259 - 0 \right) - (0) \left(-559 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10}) - (0)^{2}}$$

 $v_U = 1.5793 + 0.1169 - 0.0958 = 1.6004 \text{ N/mm}^2$ at point D

Point C has the largest absolute value of v_u , thus $v_{max} = 1.792 \text{ N/mm}^2$

PROGRAM NAME: REVISION NO.: SAFE 0

The shear capacity is calculated based on the smallest of NZS 3101-06, with the b_o and u terms removed to convert force to stress.

$$\varphi v_{v} = \min \begin{cases} \frac{1}{6} \left(1 + \frac{2}{\beta_{c}}\right) \varphi \sqrt{f'_{c}} \\ \frac{1}{6} \left(1 + \frac{\alpha_{s}d}{b_{0}}\right) \varphi \sqrt{f'_{c}} = 1.141 \text{N/mm}^{2} \text{ per} \\ \frac{1}{3} \varphi \sqrt{f'_{c}} \end{cases}$$
(NZS 12.7.3.2)

NZS 12.7.3.2 yields the smallest value of $\varphi v_v = 1.141 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio =
$$\frac{v_U}{\varphi v_v} = \frac{1.792}{1.141} = 1.57$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE NZS 3101-06 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 kN/m^2 , respectively, are defined in the model. A load combination (COMB5kPa) is defined using the NZS 3101-06 load combination factors, 1.2 for dead loads and 1.5 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing analysis, design is performed using the NZS 3101-06 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed using the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n , l_1	=	4000	mm
Concrete strength	f_c	=	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	Wc	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	2×10^{6}	MPa
Poisson's ratio	ν	=	0	
Dead load	Wa	=	4.0	kPa
Live load	Wl	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Lood		Strip Momont	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	A _s +
Madium	SAFE	24.597	5.238
Medium	Calculated	24.6	5.238

 $A_{s,\min}^{+}$ = 380.43 sq-mm

PROGRAM NAME: SAFE REVISION NO.: 0

COMPUTER FILE: NZS 3101-06 RC-SL-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for the load combination:

$$\phi_b = 0.85$$

$$b = 1000 \text{ mm}$$

$$\alpha_1 = 0.85 \text{ for } f'_c \le 55\text{MPa}$$

$$\beta_1 = 0.85 \text{ for } f'_c \le 30,$$

$$c_b = \frac{\varepsilon_c}{\varepsilon_c + f_y / E_s} d = 70.7547$$

 $a_{\text{max}} = 0.75 \beta_l c_b = 45.106 \text{ mm}$

For the load combination, w and M^* are calculated as follows:

$$w = (1.2w_d + 1.5w_t) b$$

$$M_u = \frac{wl_1^2}{8}$$

$$A_{s,\min} = \max \begin{cases} \frac{\sqrt{f'_c}}{4f_y} b_w d = 372.09 \text{ sq-mm} \\ 1.4 \frac{b_w d}{f_y} = 380.43 \text{ sq-mm} \end{cases}$$

$$= 380.43 \text{ sq-mm}$$

COMB100

$$w_d = 4.0 \text{ kPa}$$

 $w_t = 5.0 \text{ kPa}$
 $w = 12.3 \text{ kN/m}$
 $M^*_{-strip} = 24.6 \text{ kN-m}$
 $M^*_{-design} = 24.6331 \text{ kN-m}$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M^*|}{\alpha_1 f'_c \phi_b b}} = 9.449 \text{ mm} < a_{\max}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

The area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M^{*}}{\phi_{b} f_{y} \left(d - \frac{a}{2} \right)} = 523.799 \text{ sq-mm} > A_{s,\min}$$

 $A_s = 5.238$ sq-cm

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Singapore CP 65-99 PT-SL-001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: SAFE 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads have been added to the slab. The loads and post-tensioning forces are as follows.

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations are compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Τ, Ι	h=	254	mm
d	=	229	mm
L	=	9754	mm
f'_c	=	30	MPa
f_y	=	400	MPa
f_{pu}	=	1862	MPa
f_e	=	1210	MPa
Ap	=	198	mm^2
W_{c}	=	23.56	kN/m ³
E_c	=	25000	N/mm ³
E_s	=	200,000	N/mm ³
ν	=	0	
Wd	=	self	kN/m ²
Wl	=	4.788	kN/m ²
	T, T d L $f'c$ fy feu Ap wc Ec Es v wd wl	$T, h = d = L = d = L = f'_c = f_y = f_{pu} = f_e = A_p = W_c = E_c = E_s = V = W_d = W_l = W_l = W_l = W_l$	T, h = 254 d = 229 L = 9754 $f'_{c} = 30$ $f_{y} = 400$ $f_{pu} = 1862$ $f_{e} = 1210$ $A_{p} = 198$ $w_{c} = 23.56$ $E_{c} = 25000$ $E_{s} = 200,000$ v = 0 $w_{d} = \text{self}$ $w_{l} = 4.788$

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

PROGRAM NAME: $\underline{S_2}$ REVISION NO.: $\underline{0}$

SAFE 0

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE	
Factored moment,	174.4	174.4	0.00%	
Mu (Ultimate) (kN-m)			0.0070	
Area of Mild Steel req'd, As (sq-cm)	19.65	19.79	0.71%	
Transfer Conc. Stress, top (D+PT _I), MPa	-5.058	-5.057	0.02%	
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%	
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0. 50%	
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.06%	

Computer File: Singapore CP 65-99 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{S} REVISION NO.: $\underline{0}$

SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

Dead, self-wt = $0.254 \text{ m} \times 23.56 \text{ kN/m}^3 = 5.984 \text{ kN/m}^2 \text{ (D)} \times 1.4 = 8.378 \text{ kN/m}^2 \text{ (D}_u)$ Live, = $4.788 \text{ kN/m}^2 \text{ (L)} \times 1.6 = 7.661 \text{ kN/m}^2 \text{ (L}_u)$ Total = $10.772 \text{ kN/m}^2 \text{ (D+L)}$ = $16.039 \text{ kN/m}^2 \text{ (D+L)ult}$

 $\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \times 0.914 \text{ m} = 14.659 \text{ kN/m}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 14.659 \times (9.754)^2/8 = 174.4 \text{ kN-m}$

PROGRAM NAME:SAFEREVISION NO.:0

Ultimate Stress in strand,
$$f_{pb} = f_{pe} + \frac{7000}{l/d} \left(1 - 1.7 \frac{f_{pu}A_p}{f_{cu}bd} \right)$$

= $1210 + \frac{7000}{9754/229} \left(1 - 1.7 \frac{1862(198)}{30(914)(229)} \right)$
= $1358 \text{ MPa} \le 0.7 f_{pu} = 1303 \text{ MPa}$

K factor used to determine the effective depth is given as:

$$K = \frac{M}{f_{cu}bd^2} = \frac{174.4}{30000(0.914)(0.229)^2} = 0.1213 < 0.156$$
$$z = d\left(0.5 + \sqrt{0.25 - \frac{K}{0.9}}\right) \le 0.95d = 192.2 \text{ mm}$$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(99)(1303)/1000 = 258.0 \text{ kN}$

Ultimate moment due to PT,

 $M_{ult,PT} = F_{ult,PT}(z) / \gamma = 258.0(0.192)/1.15 = 43.12$ kN-m

Net Moment to be resisted by As,

$$M_{NET} = M_U - M_{PT}$$

= 174.4 - 43.12 = 131.28 kN-m

The area of tensile steel reinforcement is then given by:

$$A_s = \frac{M_{NET}}{0.87 f_y z_x} = \frac{131.28}{0.87(400)(192)} (1e6) = 1965 \text{ mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination (D+PT_i) = 1.0D+0.0L+1.0PT_I

Tendon stress at transfer = jacking stress - stressing losses = 1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to PT, $M_{PT} = F_{PTI} (\text{sag}) = 257.4 (102 \text{ mm})/1000 = 26.25$ kN-m Stress in concrete, $f = \frac{F_{PTI}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ where S = 0.00983m³ $f = -1.109 \pm 3.948$ MPa f = -5.058(Comp) max, 2.839(Tension) max

PROGRAM NAME: REVISION NO.: SAFE 0

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kNMoment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$ Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$ Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE SINGAPORE CP 65-99 RC-BM-001

Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by Singapore CP 65-99.
- The average shear stress in the beam is below the maximum shear stress allowed by Singapore CP 65-99, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL20) and one live load case (LL80) with only symmetric third-point loads of magnitudes 20, and 80 kN, respectively, are defined in the model. One load combinations (COMB80) is defined with the Singapore CP 65-99 load combination factors of 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the Singapore CP 65-99 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange Thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_c	=	30	MPa
Yield strength of steel,	f_y	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	2×10^{8}	MPa
Poisson's ratio,	V	=	0.2	
Dead load,	P_d	=	20	kN
Live load	P_1	=	80	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

Table 1 Compa	arison of Moment	s and Flexural F	Reinforcements
---------------	------------------	------------------	----------------

	Momont	Reinforcement Area (sq-cm)
Method	(kN-m)	As ⁺
SAFE	312	20.904
Calculated	312	20.904

 $A_{s,\min}^{+} = 195.00$ sq-mm

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $rac{A_v}{s}$ (sq-cm/m)	
Shear Force (kN)	SAFE	Calculated
156	6.50	6.50

COMPUTER FILE: SINGAPORE CP 65-99 RC-002.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$\gamma_{m, steel} = 1.15$$

$$\gamma_{m, concrete} = 1.50$$

$$A_{s,min} = 0.0013b_wh$$

$$= 195.00 \text{ sq-mm}$$

COMB80

$$P = (1.4P_d + 1.6P_t) = 156$$
 kN

$$M^* = \frac{N^* l}{3} = 312 \text{ kN-m}$$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu} b_f d^2} = 0.095963 < 0.156$$

Then the moment arm is computed as:

$$z = d \left\{ 0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right\} \le 0.95d = 373.4254 \text{ mm}$$

The depth of the neutral axis is computed as:

$$x = \frac{1}{0.45} (d - z) = 114.6102 \text{ mm}$$

And the depth of the compression block is given by:

$$a = 0.9x = 103.1492 \text{ mm} > h_f$$

The ultimate resistance moment of the flange is given by:

$$M_f = \frac{0.67}{\gamma_c} f_{cu} (b_f - b_w) h_f (d - 0.5h_f) = 150.75 \text{ kN-m}$$

PROGRAM NAME: REVISION NO.:

The moment taken by the web is computed as:

 $M_w = M - M_f = 161.25$ kN-m

And the normalized moment resisted by the web is given by:

$$K_w = \frac{M_w}{f_{cu} b_w d^2} = 0.0991926 < 0.156$$

If $K_w \le 0.156$ (BS 3.4.4.4), the beam is designed as a singly reinforced concrete beam. The reinforcement is calculated as the sum of two parts: one to balance compression in the flange and one to balance compression in the web.

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K_w}{0.9}} \right) \le 0.95d = 371.3988 \text{ mm}$$
$$A_s = \frac{M_f}{\frac{f_y}{\gamma_s} \left(d - 0.5h_f \right)} + \frac{M_w}{\frac{f_y}{\gamma_s} z} = 2090.4 \text{ sq-mm}$$

Shear Design

$$v = \frac{V}{b_w d} \le v_{\max} = 1.2235 \text{ MPa}$$

$$v_{\text{max}} = \min(0.8 \sqrt{f_{cu}}, 5 \text{ MPa}) = 4.38178 \text{ MPa}$$

The shear stress carried by the concrete, v_c , is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = 1.06266, 1 \le k_{2} \le \left(\frac{40}{25}\right)^{\frac{1}{3}}$$
$$\gamma_{m} = 1.25$$
$$\frac{100 A_{s}}{bd} = 0.15$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1$$

However, the following limitations also apply:

$$0.15 \le \frac{100 A_s}{bd} \le 3$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} \ge 1$$

 $f_{cu} \le 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Given v, v_c , and v_{max} , the required shear reinforcement is calculated as follows:

If
$$v \le (v_c + 0.4)$$
,

$$\frac{A_{sv}}{s_{v}} = \frac{0.4b_{w}}{0.87f_{vv}}$$

If $(v_c + 0.4) < v \le v_{\max}$,

$$\frac{A_{sv}}{s_v} = \frac{(v - v_c)b_w}{0.87f_{vv}}$$

If $v > v_{\text{max}}$, a failure condition is declared.

(COMB80)

$$P_{d} = 20 \text{ kN}$$

$$P_{l} = 80 \text{ kN}$$

$$V = 156 \text{ kN}$$

$$v^{*} = \frac{V^{*}}{b_{w}d} = 2.0 \text{ MPa} \quad (\phi_{s} v_{c} < v^{*} \le \phi_{s} v_{max})$$

$$\frac{A_{sv}}{s_{v}} = \frac{(v - v_{c})b_{w}}{0.87 f_{vv}} = 0.64967 \text{ sq-mm/mm} = 6.50 \text{ sq-cm/m}$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE Singapore CP 65-99 RC-PN-001

Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f_{cu} of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

v	onnouti
	SAFE
	0

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (N/mm ²)	Shear Capacity (N/mm ²)	D/C ratio
SAFE	1.105	0.625	1.77
Calculated	1.105	0.620	1.77

COMPUTER FILE: SINGAPORE CP 65-99 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

d = [(250 - 26) + (250 - 38)]/2 = 218 mm

Refer to Figure 1.

u = 954 + 1554 + 954 + 1554 = 5016 mm

Figure 2: Interior Column, Grid B-2 in SAFE Model

From the SAFE output at Grid B-2:

V= 1126.498 kN M_2 = 51.9908 kN-m M_3 = 45.7234 kN-m

PROGRAM NAME: REVISION NO.: SAFE 0

Maximum design shear stress in computed in along major and minor axis of column:

$$v_{eff,x} = \frac{V}{ud} \left(f + \frac{1.5M_x}{Vy} \right)$$
(CP 3.7.7.3)

$$v_{eff,x} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 51.9908 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 954} \right) = 1.1049 \text{ (Govern)}$$

$$v_{eff,y} = \frac{V}{ud} \left(f + \frac{1.5M_y}{Vx} \right)$$

$$v_{eff,y} = \frac{1126.498 \cdot 10^3}{5016 \cdot 218} \left(1.0 + \frac{1.5 \cdot 45.7234 \cdot 10^6}{1126.498 \cdot 10^3 \cdot 1554} \right) = 1.0705$$
The largest absolute value of $v = 1.1049 \text{ N/mm}^2$

The shear stress carried by the concrete, v_c , is calculated as:

$$v_c = \frac{0.79k_1k_2}{\gamma_m} \left(\frac{100A_s}{bd}\right)^{\frac{1}{3}} \left(\frac{400}{d}\right)^{\frac{1}{4}} = 0.3568 \text{ MPa}$$

 k_1 is the enhancement factor for support compression, and is conservatively taken as 1.

$$k_{2} = \left(\frac{f_{cu}}{25}\right)^{\frac{1}{3}} = \left(\frac{30}{25}\right)^{\frac{1}{3}} = 1.0627 > 1.0 \text{ OK}$$
$$\gamma_{m} = 1.25$$
$$\left(\frac{400}{d}\right)^{\frac{1}{4}} = 1.16386 > 1 \text{ OK}.$$

 $f_{cu} \le 40$ MPa (for calculation purposes only) and A_s is the area of tension reinforcement.

Area of reinforcement at the face of column for design strip are as follows: A_s in Strip Layer A = 9494.296 mm² A_s in Strip Layer B = 8314.486 mm² Average $A_s = (9494.296+8314.486)/2 = 8904.391 \text{ mm}^2$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$\frac{100 A_s}{bd} = 100 \bullet 8904.391/(8000 \bullet 218) = 0.51057$$

$$v_c = \frac{0.79 \bullet 1.0 \bullet 1.0627}{1.25} \bullet (0.51057)^{1/3} \bullet 1.16386 = 0.6247 \text{ MPa}$$

BS 3.7.7.3 yields the value of $v = 0.625 \text{ N/mm}^2$, and thus this is the shear capacity.

Shear Ratio = $\frac{v_U}{v} = \frac{1.1049}{0.6247} = 1.77$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Singapore CP 65-99 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 KN/m^2 , respectively, are defined in the model. A load combination (COMB5kPa) is defined using the Singapore CP 65-99 load combination factors, 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design is performed using the Singapore CP 65-99 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed by the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n, l_1	=	4000	mm
Concrete strength	f_c	=	30	MPa
Yield strength of steel	f_{sy}	=	460	MPa
Concrete unit weight	Wc	=	0	N/m^3
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	2×10^{6}	MPa
Poisson's ratio	ν	=	0	
Dead load	Wd	=	4.0	kPa
Live load	Wl	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Lood		Strip Momont	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	A _s +
Madium	SAFE	27.197	5.853
Medium	Calculated	27.200	5.850

 $A_{s,min}^{+} = 162.5 \text{ sq-mm}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

COMPUTER FILE: Singapore CP 65-99 RC-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.:

HAND CALCULATION

The following quantities are computed for all the load combinations:

 $\begin{array}{ll} \gamma_{m, \ steel} &= 1.15\\ \gamma_{m, \ concrete} &= 1.50\\ b &= 1000 \ \mathrm{mm} \end{array}$

For each load combination, the *w* and *M* are calculated as follows:

$$w = (1.4w_d + 1.6w_t) b$$
$$M = \frac{wl_1^2}{8}$$
$$A_{s,min} = 0.0013b_w d$$
$$= 162.5 \text{ sq-mm}$$

COMB100

$$w_d = 4.0 \text{ kPa}$$

$$w_t = 5.0 \text{ kPa}$$

$$w = 13.6 \text{ kN/m}$$

$$M_{-strip} = 27.2 \text{ kN-m}$$

$$M_{-design} = 27.2366 \text{ kN-m}$$

The depth of the compression block is given by:

$$K = \frac{M}{f_{cu}bd^2} = 0.05810 < 0.156$$

The area of tensile steel reinforcement is then given by:

$$z = d \left(0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right) \le 0.95d = 116.3283$$
$$A_s = \frac{M}{0.87f_y z} = 585.046 \text{ sq-mm} > A_{s,\min}$$
$$A_s = 5.850 \text{ sq-cm}$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Turkish TS 500-2000 PT-SL-001 Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in SAFE. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in shown in Figure 1.

Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

PROGRAM NAME: REVISION NO.: $\frac{\text{SAFE}}{0}$

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads have been added to the slab. The loads and post-tensioning forces are as follows.

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations are compared with the SAFE results and summarized for verification and validation of the SAFE results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	Τ, Ι	h=	254	mm
Effective depth	d	=	229	mm
Clear span	L	=	9754	mm
Concrete strength	f_{ck}	=	30	MPa
Yield strength of steel	f_{yk}	=	400	MPa
Prestressing, ultimate	f_{pu}	=	1862	MPa
Prestressing, effective	f_e	=	1210	MPa
Area of Prestress (single strand)	Ap	=	198	mm^2
Concrete unit weight	W_{C}	=	23.56	kN/m ³
Modulus of elasticity	E_c	=	25000	N/mm ³
Modulus of elasticity	E_s	=	200,000	N/mm ³
Poisson's ratio	ν	=	0	
Dead load	Wd	=	self	kN/m ²
Live load	Wl	=	4.788	kN/m ²

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

PROGRAM NAME: $\underline{S_2}$ REVISION NO.: $\underline{0}$

SAFE 0

Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	SAFE RESULTS	DIFFERENCE	
Factored moment,	174.4	174.4	0.00%	
Mu (Ultimate) (kN-m)				
Area of Mild Steel req'd, As (sq-cm)	14.88	14.90	0.13%	
Transfer Conc. Stress, top (D+PT _I), MPa	-5.058	-5.057	0.02%	
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%	
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.465	0. 50%	
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.407	0.06%	

COMPUTER FILE: TURKISH TS 500-2000 PT-SL-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: \underline{S} REVISION NO.: $\underline{0}$

SAFE 0

HAND CALCULATIONS:

Design Parameters:

Loads:

Dead, self-wt = $0.254 \text{ m} \times 23.56 \text{ kN/m}^3 = 5.984 \text{ kN/m}^2 \text{ (D)} \times 1.4 = 8.378 \text{ kN/m}^2 \text{ (D}_u)$ Live, $= 4.788 \text{ kN/m}^2 \text{ (L)} \times 1.6 = 7.661 \text{ kN/m}^2 \text{ (L}_u)$ Total = $10.772 \text{ kN/m}^2 \text{ (D+L)} = 16.039 \text{ kN/m}^2 \text{ (D+L)ult}$

 $\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \times 0.914 \text{ m} = 14.659 \text{ kN/m}$

Ultimate Moment, $M_U = \frac{w l_1^2}{8} = 14.659 \times (9.754)^2/8 = 174.4 \text{ kN-m}$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

Ultimate Stress in strand,
$$f_{Pd} = f_{pe} + 7000d \left(1 - 1.36 \frac{f_{PU}A_p}{f_{CK}bd} \right) / l$$

= 1210 + 7000(229) $\left(1 - 1.36 \frac{1862(198)}{30(914)(229)} \right) / (9754)$
= 1361 MPa

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(99)(1361)/1000 = 269.5 \text{ kN}$

Stress block depth,
$$a = d - \sqrt{d^2 - \frac{2M_d}{0.85f_{cd}b}}$$

= $0.229 - \sqrt{0.229^2 - \frac{2(174.4)}{0.85(20000)(0.914)}}$ (1e3) = 55.816 mm

Ultimate moment due to PT,

$$M_{ult,PT} = F_{ult,PT} \left(d - \frac{a}{2} \right) = 269.5 \left(229 - \frac{55.816}{2} \right) / 1000 = 54.194 \text{ kN-m}$$

Net ultimate moment, $M_{net} = M_U - M_{ult,PT} = 174.4 - 54.194 = 120.206$ kN-m

Required area of mild steel reinforcing,

$$A_{s} = \frac{M_{net}}{f_{yd} \left(d - \frac{a}{2} \right)} = \frac{120.206 \bullet 10^{6}}{(400) \left(229 - \frac{54.194}{2} \right)} = 1488.4 \text{ mm}^{2}$$

K factor used to determine the effective depth is given as:

$$K = \frac{M}{f_{cu}bd^2} = \frac{174.4}{30000/1.5(0.914)(0.229)^2} = 0.1819 < 0.156$$
$$z = d\left(0.5 + \sqrt{0.25 - \frac{K}{0.9}}\right) \le 0.95d = 192.2 \text{ mm}$$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(99)(1303)/1000 = 258.0 \text{ kN}$

Ultimate moment due to PT,

$$M_{ult,PT} = F_{ult,PT}(z) / \gamma = 258.0(0.192)/1.15 = 43.12$$
 kN-m

Net Moment to be resisted by As,

0

PROGRAM NAME: **REVISION NO.:**

SAFE

 $M_{\rm NFT} = M_{\rm U} - M_{\rm PT}$ = 174.4 - 43.12 = 131.28 kN-m

The area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M_{NET}}{f_{yd}z_{X}} = \frac{131.28}{0.87(400)(192)}(1e6) = 1965 \text{ mm}^{2}$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination $(D+PT_i) = 1.0D+0.0L+1.0PT_I$

Tendon stress at transfer = jacking stress – stressing losses = 1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN Moment due to dead load, $M_p = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m $M_{PT} = F_{PTI} (\text{sag}) = 257.4 (102 \text{ mm}) / 1000 = 26.25 \text{ kN-m}$ Moment due to PT, $f = \frac{F_{PTI}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$ Stress in concrete, where $S = 0.00983m^3$ $f = -1.109 \pm 3.948$ MPa f = -5.058(Comp) max, 2.839(Tension) max

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kN Moment due to dead load, $M_p = 5.984(0.914)(9.754)^2/8 = 65.04$ kN-m Moment due to live load, $M_{T} = 4.788(0.914)(9.754)^{2}/8 = 52.04$ kN-m $M_{PT} = F_{PTT}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$ Moment due to PT,

Stress in concrete for $(D+L+PT_F)$,

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

$$f = -10.460(\text{Comp}) \max, 8.402(\text{Tension}) \max$$

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE Turkish TS 500-2000 RC-BM-001 Flexural and Shear Beam Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE. The load level is adjusted for the case corresponding to the following conditions:

- The stress-block extends below the flange but remains within the balanced condition permitted by TS 500-2000.
- The average shear stress in the beam is below the maximum shear stress allowed by TS 500-2000, requiring design shear reinforcement.

A simple-span, 6-m-long, 300-mm-wide, and 500-mm-deep T-beam with a flange 100 mm thick and 600 mm wide is modeled using SAFE. The beam is shown in Figure 1. The computational model uses a finite element mesh of frame elements, automatically generated by SAFE. The maximum element size has been specified to be 200 mm. The beam is supported by columns without rotational stiffnesses and with very large vertical stiffness (1×10^{20} kN/m).

The beam is loaded with symmetric third-point loading. One dead load case (DL20) and one live load case (LL80) with only symmetric third-point loads of magnitudes 20, and 80 kN, respectively, are defined in the model. One load combinations (COMB80) is defined with the Turkish TS 500-2000 load combination factors of 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both of these load cases and the load combinations.

The beam moment and shear force are computed analytically. The total factored moment and shear force are compared with the SAFE results. These moment and shear force are identical. After completing the analysis, design is performed using the Turkish TS 500-2000 code in SAFE and also by hand computation. Table 1 shows the comparison of the design longitudinal reinforcements. Table 2 shows the comparison of the design shear reinforcements.

PROGRAM NAME: $\underline{S}_{...}$ REVISION NO.: $\underline{0}$

SAFE 0

Figure 1 The Model Beam for Flexural and Shear Design

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

GEOMETRY, PROPERTIES AND LOADING

Clear span,	l	=	6000	mm
Overall depth,	h	=	500	mm
Flange Thickness,	d_s	=	100	mm
Width of web,	b_w	=	300	mm
Width of flange,	b_{f}	=	600	mm
Depth of tensile reinf.,	d_c	=	75	mm
Effective depth,	d	=	425	mm
Depth of comp. reinf.,	d'	=	75	mm
Concrete strength,	f_{ck}	=	30	MPa
Yield strength of steel,	f_{yk}	=	460	MPa
Concrete unit weight,	Wc	=	0	kN/m ³
Modulus of elasticity,	E_c	=	25×10^{5}	MPa
Modulus of elasticity,	E_s	=	2×10^{8}	MPa
Poisson's ratio,	V	=	0.2	
Dead load,	P_d	=	20	kN
Live load.	P_l	=	80	kN

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural and shear reinforcement
- > Application of minimum flexural and shear reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the analytical method. They match exactly for this problem. Table 1 also shows the comparison of design reinforcements.

Table 1 Compa	arison of Moment	s and Flexural F	Reinforcements
---------------	------------------	------------------	----------------

	Momont	Reinforcement Area (sq-cm)
Method	(kN-m)	As ⁺
SAFE	312	20.244
Calculated	312	20.244

 $A_{s,min}^{+} = 325.9$ sq-mm

PROGRAM NAME: REVISION NO.: SAFE 0

Table 2 Comparison of Shear Reinforcements

	Reinforcement Area, $\frac{A_v}{s}$ (sq-cm/m)	
Shear Force (kN)	SAFE	Calculated
156	4.19	4.19

COMPUTER FILE: TURKISH TS 500-2000 RC-002.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

HAND CALCULATION

Flexural Design

The following quantities are computed for all the load combinations:

$$y_{m, steel} = 1.15$$

$$y_{m, concrete} = 1.50$$

$$f_{cd} = \frac{f_{ck}}{\gamma_{mc}} = \frac{30}{1.5} = 20$$

$$f_{yd} = \frac{f_{yk}}{\gamma_{ms}} = \frac{460}{1.15} = 400$$

$$c_{b} = \frac{\varepsilon_{cu}E_{s}}{\varepsilon_{cu}E_{s} + f_{yd}}d = 255 \text{ mm}$$

$$a_{max} = 0.85k_{1}c_{b} = 177.7 \text{ mm}$$
where, $k_{1} = 0.85 - 0.006(f_{ck} - 25) = 0.82, 0.70 \le k_{1} \le 0.85$

$$A_{s,min} = \frac{0.8f_{ctd}}{f_{yd}}bd = 325.9 mm^{2}$$
Where $f_{ctd} = \frac{0.35\sqrt{f_{cu}}}{\gamma_{mc}} = \frac{0.35\sqrt{30}}{1.5} = 1.278$

COMB80

$$P_d = (1.4P_G + 1.6P_Q) = 156 \text{ kN}$$

$$M_d = \frac{N_d l}{3} = 312 \text{ kN-m}$$

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_d|}{0.85f_{cd}b}} = 79.386 \text{ mm} < 100 \text{ mm}$$

since a $< a_{max}$,

0

SAFE

PROGRAM NAME: REVISION NO.:

$$a = d - \sqrt{d^2 - \frac{2M_d}{0.85f_{cd} \ b}}$$
(TS 7.1)
$$a = 425 - \sqrt{425^2 - \frac{2 \cdot 312 \cdot 10^6}{0.85 \cdot 20 \cdot 600}} = 79.387 \text{ mm}$$

If $a \le a_{max}$ (TS 7.1), the area of tensile steel reinforcement is then given by:

$$A_s = \frac{M_d}{f_{yd} \left(d - \frac{a}{2} \right)} = \frac{312 \cdot 10^6}{400 \left(425 - \frac{79.387}{2} \right)} = 2024.36 \text{ mm}^2 \text{, and}$$

Shear Design

$$P_d = 20 \text{ kN}$$
$$P_l = 80 \text{ kN}$$
$$V = 156 \text{ kN}$$

The shear force is limited to a maximum of,

$$V_{\rm max} = 0.22 f_{cd} A_w = 561 \ kN$$

The nominal shear strength provided by concrete is computed as:

$$V_{cr} = 0.65 f_{ctd} b_w d \left(1 + \frac{\gamma N_d}{A_g} \right) = 105.9 \text{ kN}, \text{ where } N_d = 0$$
$$V_c = 0.8 V_{cr} = 84.73 \text{ kN}$$

The shear reinforcement is computed as follows:

If
$$V_d \leq V_{cr}$$

 $\left(\frac{A_{sw}}{s}\right)_{\min} = 0.3 \frac{f_{ctd}}{f_{ywd}} b = 0.2876 \frac{mm^2}{mm}$ (TS 8.1.5, Eqn 8.6)

If
$$V_{cr} \leq V_d \leq V_{max}$$

EXAMPLE Turkish TS 500-2000 RC-BM-001 - 6

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

$$\frac{A_{sw}}{s} = \frac{(V_d - V_c)}{f_{ywd}d} = 0.419 \frac{mm^2}{mm}$$

(TS 8.1.4, Eqn 8.5)

PROGRAM NAME: <u>SAFE</u> REVISION NO.: <u>0</u>

EXAMPLE Turkish TS 500-2000 RC-PN-001 Slab Punching Shear Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab punching shear design in SAFE

The numerical example is a flat slab that has three 8-m spans in each direction, as shown in Figure 1.

Figure 1: Flat Slab for Numerical Example

The slab overhangs beyond the face of the column by 0.15 m along each side of the structure. The columns are typically 0.3 m x 0.9 m with the long side parallel to the Y-axis. The slab is typically 0.25 m thick. Thick plate properties are used for the slab.

The concrete has a unit weight of 24 kN/m³ and a f_{ck} of 30 N/mm². The dead load consists of the self weight of the structure plus an additional 1 kN/m². The live load is 4 kN/m².

PROGRAM NAME: REVISION NO.:

•	ormouti
	SAFE
	0

TECHNICAL FEATURES OF SAFE TESTED

Calculation of punching shear capacity, shear stress and D/C ratio.

RESULTS COMPARISON

Table 1 shows the comparison of the punching shear capacity, shear stress ratio and D/C ratio obtained from SAFE with the punching shear capacity, shear stress ratio and D/C ratio obtained by the analytical method. They match exactly for this problem.

Table 1 Comparison of Design Results for Punching Shear at Grid B-2

Method	Shear Stress (N/mm ²)	Shear Capacity (N/mm ²)	D/C ratio
SAFE	1.690	1.278	1.32
Calculated	1.690	1.278	1.32

COMPUTER FILE: TURKISH TS 500-2000 RC-PN-001.FDB

CONCLUSION

The SAFE results show an exact comparison with the independent results.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME:	SAFE
REVISION NO.:	0

HAND CALCULATION

Hand Calculation For Interior Column Using SAFE Method

$$d = [(250 - 26) + (250 - 38)]/2 = 218 \text{ mm}$$

 $b_0 = 518 + 1118 + 1118 + 518 = 3272 \text{ mm}$

Figure 2: Interior Column, Grid B-2 in SAFE Model

$$\eta_2 = 1 - \frac{1}{1 + \sqrt{\frac{1118}{518}}} = 0.595$$
$$\eta_3 = 1 - \frac{1}{1 + \sqrt{\frac{518}{1118}}} = 0.405$$

The coordinates of the center of the column (x_1, y_1) are taken as (0, 0).

The following table is used for calculating the centroid of the critical section for punching shear. Side 1, Side 2, Side 3, and Side 4 refer to the sides of the critical section for punching shear as identified in Figure 2.

PROGRAM NAME: REVISION NO.: SAFE 0

Item	Side 1	Side 2	Side 3	Side 4	Sum
<i>x</i> ₂	-259	0	259	0	N.A.
<i>y</i> 2	0	559	0	-559	N.A.
L	1118	518	1118	518	$b_0 = 3272$
d	218	218	218	218	N.A.
Ld	243724	112924	243724	112924	713296
Ldx_2	-63124516	0	63124516	0	0
Ldy ₂	0	63124516	0	-63124516	0

$$x_{3} = \frac{\sum Ldx_{2}}{Ld} = \frac{0}{713296} = 0 mm$$
$$y_{3} = \frac{\sum Ldy_{2}}{Ld} = \frac{0}{713296} = 0 mm$$

The following table is used to calculate I_{XX} , I_{YY} and I_{XY} . The values for I_{XX} , I_{YY} and I_{XY} are given in the "Sum" column.

Item	Side 1	Side 2	Side 3	Side 4	Sum
L	1118	518	1118	518	N.A.
d	218	218	218	218	N.A.
$x_2 - x_3$	-259	0	259	0	N.A.
$y_2 - y_3$	0	559	0	-559	N.A.
Parallel to	Y-Axis	X-axis	Y-Axis	X-axis	N.A.
Equations	5b, 6b	5a, 6a	5b, 6b	5a, 6a	N.A.
I _{XX}	5.43E+07	6.31E+07	2.64E+10	3.53E+10	1.23E+11
I _{YY}	6.31E+07	1.39E07	1.63E+10	2.97E+09	3.86E+10

From the SAFE output at Grid B-2:

 V_d = 1126.498 kN 0.4 $\eta M_{d,2}$ = -8.4226 kN-m 0.4 $\eta M_{d,3}$ = 10.8821 kN-m

Maximum design shear stress in computed in along major and minor axis of column:

$$v_{pd} = \frac{V_{pd}}{u_p d} \left[1 + \eta \frac{0.4M_{pd,2}u_p d}{V_{pd}W_{m,2}} + \eta \frac{0.4M_{pd,3}u_p d}{V_{pd}W_{m,3}} \right],$$
(TS 8.3.1)

At the point labeled A in Figure 2, $x_4 = -259$ and $y_4 = 559$, thus:

PROGRAM NAME: <u>SAFE</u> REVISION NO.: 0

$$vv = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{8.423 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(559 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10})} + \frac{10.882 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(-259 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10})}$$

 $v_U = 1.5793 - 0.0383 - 0.0730 = 1.4680 \text{ N/mm}^2$ at point A

At the point labeled B in Figure 2, $x_4 = 259$ and $y_4 = 559$, thus:

$$v_{U} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{8.423 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(559 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10})} + \frac{10.8821 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(259 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10})}$$

 $v_U = 1.5793 - 0.0383 + 0.0730 = 1.614 \text{ N/mm}^2$ at point B

At the point labeled C in Figure 2, $x_4 = 259$ and $y_4 = -559$, thus:

$$v_{U} = \frac{1126.498 \cdot 10^{3}}{3272 \cdot 218} - \frac{8.423 \cdot 10^{6} \left[3.86 \cdot 10^{10} \left(-559 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10})} + \frac{10.882 \cdot 10^{6} \left[1.23 \cdot 10^{11} \left(259 - 0 \right) \right]}{(1.23 \cdot 10^{11}) (3.86 \cdot 10^{10})}$$

 $v_U = 1.5793 + 0.0383 + 0.0730 = 1.690 \text{ N/mm}^2$ at point C

At the point labeled D in Figure 2, $x_4 = -259$ and $y_4 = -559$, thus:

$$v_{U} = \frac{1126.498 \bullet 10^{3}}{3272 \bullet 218} - \frac{8.423 \bullet 10^{6} \left[3.86 \bullet 10^{10} \left(-559 - 0 \right) \right]}{(1.23 \bullet 10^{11})(3.86 \bullet 10^{10})} + \frac{10.8821 \bullet 10^{6} \left[1.23 \bullet 10^{11} \left(-259 - 0 \right) \right]}{(1.23 \bullet 10^{11})(3.86 \bullet 10^{10})}$$

 $v_U = 1.5793 + 0.383 - 0.0730 = 1.5446 \text{ N/mm}^2$ at point D

Point C has the largest absolute value of v_u , thus $v_{max} = 1.690 \text{ N/mm}^2$

PROGRAM NAME: REVISION NO.: SAFE 0

The concrete punching shear stress capacity of a section with punching shear reinforcement is limited to:

$$v_{pr} = f_{ctd} = 0.35 \sqrt{f_{ck}} / \gamma_c$$
 (TS 8.3.1)
 $v_{pr} = f_{ctd} = 0.35 \sqrt{30} / 1.5 = 1.278 \,\text{N/mm}^2$

Shear Ratio =
$$\frac{v_{pd}}{v_{pr}} = \frac{1.690}{1.278} = 1.32$$

PROGRAM NAME:	SAFE
REVISION NO.:	0

EXAMPLE Turkish TS 500-2000 RC-SL-001

Slab Flexural Design

PROBLEM DESCRIPTION

The purpose of this example is to verify slab flexural design in SAFE.

A one-way, simple-span slab supported by walls on two opposite edges is modeled using SAFE. The slab is 150 mm thick and spans 4 meters between walls. The walls are modeled as pin supports. The computational model uses a finite element mesh, automatically generated by SAFE. The maximum element size is specified as 0.25 meters. To obtain factored moments and flexural reinforcement in a design strip, one one-meter wide strip is defined in the X-direction on the slab, as shown in Figure 1.

Figure 1 Plan View of One-Way Slab

One dead load case (DL4KPa) and one live load case (LL5KPa) with uniformly distributed surface loads of magnitudes 4 and 5 KN/m², respectively, are defined in the model. A load combination (COMB5kPa) is defined using the Turkish TS 500-2000 load combination factors, 1.4 for dead loads and 1.6 for live loads. The model is analyzed for both load cases and the load combination.

The slab moment on a strip of unit width is computed analytically. The total factored strip moments are compared with the SAFE results. After completing the analysis, design is performed using the Turkish TS 500-2000 code by SAFE and also by hand computation. Table 1 shows the comparison of the design reinforcements computed by the two methods.

PROGRAM NAME: REVISION NO.:

SAFE 0

GEOMETRY, PROPERTIES AND LOADING

Thickness	<i>T</i> , <i>h</i>	=	150	mm
Depth of tensile reinf.	d_c	=	25	mm
Effective depth	d	=	125	mm
Clear span	l_n, l_1	=	4000	mm
Concrete strength	f_{ck}	=	30	MPa
Yield strength of steel	f_{vk}	=	460	MPa
Concrete unit weight	Wc	=	0	N/m ³
Modulus of elasticity	E_c	=	25000	MPa
Modulus of elasticity	E_s	=	2×10^{6}	MPa
Poisson's ratio	ν	=	0	
Dead load	Wd	=	4.0	kPa
Live load	Wi	=	5.0	kPa

TECHNICAL FEATURES OF SAFE TESTED

- Calculation of flexural reinforcement
- > Application of minimum flexural reinforcement

RESULTS COMPARISON

Table 1 shows the comparison of the SAFE total factored moments in the design strip with the moments obtained by the hand computation method. Table 1 also shows the comparison of the design reinforcements.

Table 1 Comparison of Design Moments and Reinforcements

Lood		Strip Momont	Reinforcement Area (sq-cm)
Level	Method	(kN-m)	A _s +
Madium	SAFE	27.197	5.760
Medium	Calculated	27.200	5.760

 $A_{s,min}^{+} = 162.5 \text{ sq-mm}$

PROGRAM NAME: SAFE REVISION NO.: 0

COMPUTER FILE: Turkish TS 500-2000 RC-001.FDB

CONCLUSION

The SAFE results show an acceptable comparison with the independent results.

PROGRAM NAME: REVISION NO.:

onnout	
SAFE	
0	-

HAND CALCULATION

The following quantities are computed for all the load combinations:

$$\begin{split} \gamma_{m, steel} &= 1.15 \\ \gamma_{m, concrete} &= 1.50 \\ f_{cd} &= \frac{f_{ck}}{\gamma_{mc}} = \frac{30}{1.5} = 20 \\ f_{yd} &= \frac{f_{yk}}{\gamma_{ms}} = \frac{460}{1.15} = 400 \\ c_b &= \frac{\varepsilon_{cu} E_s}{\varepsilon_{cu} E_s + f_{yd}} d = 75 \text{ mm} \\ a_{max} &= 0.85k_1c_b = 52.275 \text{ mm} \\ \text{where,} \quad k_1 = 0.85 - 0.006(f_{ck} - 25) = 0.82, \ 0.70 \le k_1 \le 0.85 \\ A_{s,\min} &= \frac{0.8f_{ctd}}{f_{yd}} bd = 325.9 \text{ mm}^2 \\ \text{Where} \quad f_{ctd} &= \frac{0.35\sqrt{f_{cu}}}{\gamma_{mc}} = \frac{0.35\sqrt{30}}{1.5} = 1.278 \end{split}$$

For each load combination, the *w* and *M* are calculated as follows:

b

$$w = (1.4w_d + 1.6w_t)$$
$$M = \frac{wl_1^2}{8}$$

COMB100

 $w_d = 4.0 \text{ kPa}$ $w_t = 5.0 \text{ kPa}$ w = 13.6 kN/m $M_{-strip} = 27.2 \text{ kN-m}$ $M_{-design} = 27.2366 \text{ kN-m}$

The depth of the compression block is given by:

PROGRAM NAME: <u>SAFE</u> revision no.: 0

The depth of the compression block is given by:

$$a = d - \sqrt{d^2 - \frac{2|M_d|}{0.85f_{cd}b}}$$
(TS 7.1)

$$a = 125 - \sqrt{125^2 - \frac{2 \cdot 27.2366 \cdot 10^6}{0.85 \cdot 20 \cdot 1000}} = 13.5518 \text{ mm}$$

If $a \le a_{max}$ (TS 7.1), the area of tensile steel reinforcement is then given by:

$$A_{s} = \frac{M_{d}}{f_{yd} \left(d - \frac{a}{2} \right)} = \frac{27.2366 \bullet 10^{6}}{400 \left(125 - \frac{13.5518}{2} \right)} = 576 \text{ mm}^{2}$$

PROGRAM NAME:	SAFE	
REVISION NO.:	0	

CONCLUSIONS

The conclusions are presented separately for analysis, reinforced concrete beam and slab design, and post-tensioned slab design in the following subsections.

ANALYSIS

The SAFE verification and validation example problems for analysis show Acceptable comparison with the independent solutions. The accuracy of the SAFE results for certain examples depends on the discretization of the area objects. For those examples, as the discretization is refined, the solution becomes more accurate.

DESIGN

The design results for flexural and shear design for reinforced concrete beams; flexural design for reinforced concrete and post-tensioned slab and stress checks for post-tensioned slabs show exact comparison with hand calculations.

MESHING OF AREA ELEMENTS

It is important to adequately mesh area elements to obtain satisfactory results. The art of creating area element models includes determining what constitutes an adequate mesh. In general, meshes should always be two or more elements wide. Rectangular elements give the best results and the aspect ratio should not be excessive. A tighter mesh may be needed in areas where the stress is high or the stress is changing quickly.

When reviewing results, the following process can help determine if the mesh is adequate. Pick a joint in a high stress area that has several different area elements connected to it. Review the stress reported for that joint for each of the area elements. If the stresses are similar, the mesh likely is adequate. Otherwise, additional meshing is required. If you choose to view the stresses graphically when using this process, be sure to turn off the stress averaging feature when displaying the stresses.

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME:	SAFE
REVISION NO.:	0

References

- ACI Committee 435, 1984. Deflection of Two-way Reinforced Concrete Floor Systems: State-of-the-Art Report, (ACI 435-6R-74), (Reaffirmed 1984), American Concrete Institute, Detroit, Michigan.
- ACI Committee 336, 1988. Suggested Analysis and Design Procedures for Combined Footings and Mats (ACI 336-2R-88), American Concrete Institute, Detroit, Michigan.
- ACI Committee 340, 1991. Design Handbook In Accordance with the Strength Design Method of ACI 318-89, Volume 3, Two-way Slabs (ACI 340.4R-91), American Concrete Institute, Detroit, Michigan.
- ACI Committee 340, 1997. ACI Design Handbook, Design of Structural Reinforced Concrete Elements in Accordance with the Strength Design Method of ACI 318-95 (ACI 340R-97), American Concrete Institute, Detroit, Michigan.
- ACI Committee 318, 1995. Building Code Requirements for Reinforced Concrete (ACI 318-95) and Commentary (ACI 318R-95), American Concrete Institute, Detroit, Michigan.
- Corley, W. G. and J. O. Jirsa, 1970. Equivalent Frame Analysis for Slab Design, ACI Journal, Vol. 67, No. 11, November.
- Gamble, W. L., M. A. Sozen, and C. P. Siess, 1969. Tests of a Two-way Reinforced Concrete Floor Slab, Journal of the Structural Division, Proceedings of the ASCE, Vol. 95, ST6, June.
- Guralnick, S. A. and R. W. LaFraugh, 1963. Laboratory Study of a 45-Foot Square Flat Plate Structure, ACI Journal, Vol. 60, No.9, September.
- Hatcher, D. S., M. A. Sozen, and C. P. Siess, 1965. Test of a Reinforced Concrete Flat Plate, Journal of the Structural Division, Proceedings of the ASCE, Vol. 91, ST5, October.
- Hatcher, D. S., M. A. Sozen, and C. P. Siess, 1969. Test of a Reinforced Concrete Flat Slab, Journal of the Structural Division, Proceedings of the ASCE, Vol. 95, ST6, June.
- Jirsa, J. O., M. A. Sozen, and C. P. Siess, 1966. Test of a Flat Slab Reinforced with Welded Wire Fabric, Journal of the Structural Division, Proceedings of the ASCE, Vol. 92, ST3, June.
- PCA, 1990. Notes on ACI 318-89 Building Code Requirements for Reinforced Concrete with Design Applications, Portland Cement Association, Skokie, Illinois.
Software Verification

PROGRAM NAME: REVISION NO.:

CHIEC	un
SAFE	
0	

- PCA, 1996. Notes on ACI 318-95 Building Code Requirements for Reinforced Concrete with Design Applications, Portland Cement Association, Skokie, Illinois.
- Roark, Raymond J., and Warren C. Young, 1975. Formulas for Stress and Strain, Fifth Edition, Table 3, p. 107-108. McGraw-Hill, 2 Penn Plaza, New York, NY 10121-0101.
- Timoshenko, S. and S. Woinowsky-Krieger, 1959, Theory of Plates and Shells, McGraw-Hill, 2 Penn Plaza, New York, NY 10121-0101.
- Ugural, A. C. 1981, Stresses in Plates and Shells, McGraw-Hill, 2 Penn Plaza, New York, NY 10121-0101.
- Vanderbilt, M. D., M. A. Sozen, and C. P. Siess, 1969. Tests of a Modified Reinforced Concrete Two-Way Slab, Journal of the Structural Division, Proceedings of the ASCE, Vol. 95, ST6, June.