SEISMIC ANALYSIS AND DESIGN AS PER EC 8 IN ETABS 2016 AND SAP2000 V19

I. Overview

Seismic analysis and design as per Eurocode 8 can be done quite easily with the built-in features of ETABS 2016 and SAP2000 v19.

ETABS 2016/SAP2000 v19 are capable to perform the following methods of seismic analysis and design:

- Equivalent Lateral Force Method (Static, Linear)
- Response Spectrum Analysis (Dynamic, Linear)
- Time-History Analysis (Dynamic, Linear or Nonlinear)
- PBD -Performance Based Design (Static or Dynamic, Nonlinear)

This technical note will focus on seismic analysis and design using Equivalent Lateral Force Method (ELF) and Response Spectrum Analysis (RSA).

II. Defining Seismic Mass Source

For both ELF and RSA methods, seismic mass source will first need to be defined. The weight of the structure used in the calculation of automatic seismic loads is based on the specified mass of the structure, and is termed *mass source* in ETABS 2016 and SAP2000 v19.

In EC8, the storey weight, W_i at storey *i*, taken when calculating the seismic actions should comprise the full permanent load plus the variable load multiplied by a factor Ψ_{Ei} . Ψ_{Ei} is equal to Ψ_{2i} multiplied by a reduction factor φ .

Values of Ψ_{2i} and φ are National Determined Parameters and reference should be made to specific National Annexes. Note that these factors differ with occupancy category (residential, offices, shops, etc.). Thus, mass source definition could be different from projects to projects.

To define the seismic mass source, click on **Define>Mass Source**... then define mass source as below:

Mass Source Name MsSrc_OfficeBldg	Load Pattern Multiplier
lass Source	Dead v 1 Add
Element Self Mass	Dead 1 LiveB-OfficeRoof 0.3 LiveB-Office 0.24
Additional Mass	LiveD-Shop 0.6 LiveD-Shop 0.6 LiveE-Storage 0.8
Specified Load Patterns	
Adjust Diaphragm Lateral Mass to Move Mass Centroid by:	Mass Options
This Ratio of Diaphragm Width in X Direction	
This Ratio of Diaphragm Width in Y Direction	Include Vertical Mass
	Lump Lateral Mass at Story Levels

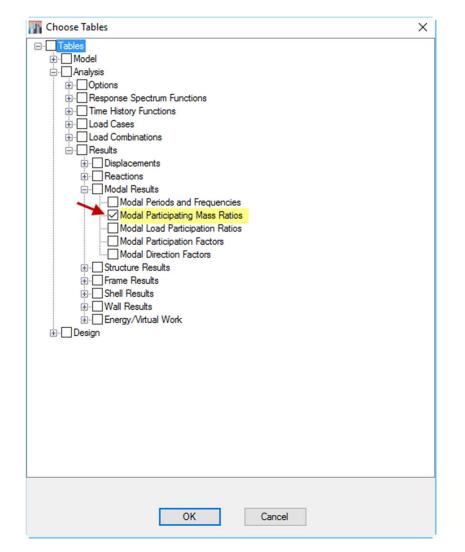
III. Defining Modal Analysis

Modal Analysis results give modal frequencies/period and mode shapes that are primarily used in Response Spectrum Analysis in ETABS 2016 and SAP2000 v19.

The fundamental modal periods on the two main orthogonal directions reported from the modal analysis can be used in calculating the base shear for Equivalent Lateral Force Method.

Modal analysis type can be either Eigen vector or Ritz vector.

To define a Modal Analysis load case, click on **Define>Modal Cases...**


General		
Modal Case Name	Modal	Design
Modal Case SubType	Eigen	V Notes
Exclude Objects in this Group	Not Applicable	
Mass Source	MsSrc_DomesticBldg	
P-Delta/Nonlinear Stiffness		
Use Preset P-Delta Settings	Iterative based on loads	lodify/Show
O Use Nonlinear Case (Loads at End	of Case NOT Included)	
Nonlinear Case		
.oads Applied		
Advanced Load Data Does NOT Exist		Advanced
Other Parameters		
Maximum Number of Modes	12	
Minimum Number of Modes	1	
Frequency Shift (Center)	0	cyc/sec
Cutoff Frequency (Radius)	0	cyc/sec
Convergence Tolerance		-09
		-03
Allow Auto Frequency Shifting		

The maximum number of modes specified should be sufficient to meet the 90% mass participation requirement by the code. This requirement is to ensure that the response of all modes of vibration contributing significantly to the global response has been taken into account.

After running modal analysis, Modal Mass Participation can be checked in ETABS 2016 and SAP2000 v19:

Click on **Display>Show Tables...** and tick Modal Participating Mass Ratios under Results> Modal Results.

	Case	Mode	Period	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	Ī
•	Modal	1	0.37	0.1844	0.1133	0	0.1844	0.1133	0	T
	Modal	2	0.258	0.2876	0.4229	0	0.472	0.5362	0	1
	Modal	3	0.194	0.2562	0.1802	0	0.7282	0.7164	0	
	Modal	4	0.093	0.0508	0.0295	0	0.779	0.7459	0	
	Modal	5	0.06	0.0865	0.1171	0	0.8655	0.863	0	
	Modal	6	0.046	0.0631	0.0529	0	0.9286	0.9159	0	
	Modal	7	0.044	0.0071	0.0113	0	0.9357	0.9272	0	
	Modal	8	0.029	0.006	0.0045	0	0.9416	0.9318	0	
	Modal	9	0.028	0.0245	0.0308	0	0.9662	0.9625	0	
	Modal	10	0.022	0.002	0.0009	0	0.9682	0.9634	0	
	Modal	11	0.021	0.0121	0.0145	0	0.9803	0.9779	0	
	Modal	12	0.019	3.762E-05	0.0012	0 (0.9803	0.9791	0	

IV. Accounting for Effect of Cracking

EC8 also requires that the stiffness of all load bearing elements must account for the effect of cracking. EC8 also states that unless a more accurate analysis of the cracked elements is performed, the elastic flexural and shear stiffness properties of concrete elements may be taken to be equal to one-half of the corresponding stiffness of the uncracked sections.

To satisfy the above requirements, stiffness properties of slabs with shell properties, beams, columns, and walls has to be reduced to 50%.

To reduce the stiffness properties of slabs with shell properties, select the slabs, and click on Assign>Shell>Stiffness Modifiers...

Property/Stiffness Modifiers for Analys	is
Membrane f11 Direction	0.5
Membrane f22 Direction	0.5
Membrane f12 Direction	0.001
Bending m11 Direction	0.5
Bending m22 Direction	0.5
Bending m12 Direction	0.001
Shear v13 Direction	0.5
Shear v23 Direction	0.5
Mass	1
Weight	1

To reduce the stiffness properties of beams, select the beams and click on Assign>Frame>Property Modifiers...

Property/Stiffness Modifiers for Analysis	
Cross-section (axial) Area	1
Shear Area in 2 direction	0.5
Shear Area in 3 direction	0.5
Torsional Constant	0.1
Moment of Inertia about 2 axis	0.5
Moment of Inertia about 3 axis	0.5
Mass	1
Weight	1

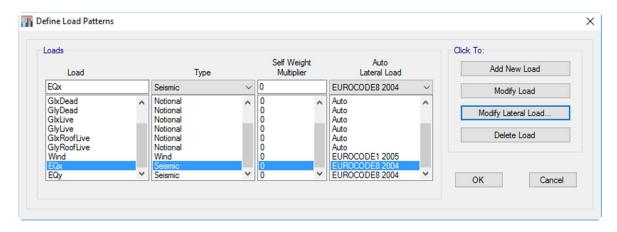
To reduce the stiffness properties of columns, select the columns and click on Assign>Frame>Property Modifiers...

Property/Stiffness Modifiers for Analysis	
Cross-section (axial) Area	0.5
Shear Area in 2 direction	0.5
Shear Area in 3 direction	0.5
Torsional Constant	0.5
Moment of Inertia about 2 axis	0.5
Moment of Inertia about 3 axis	0.5
Mass	1
Weight	1

To reduce the properties of walls, select the walls, and click on Assign>Shell>Stiffness Modifiers...

roperty/Stiffness Modifiers for Analysis	
Membrane f11 Direction	0.5
Membrane f22 Direction	0.5
Membrane f12 Direction	0.5
Bending m11 Direction	0.5
Bending m22 Direction	0.5
Bending m12 Direction	0.5
Shear v13 Direction	0.5
Shear v23 Direction	0.5
Mass	1
Weight	h

V. Defining Auto Seismic Loads for Equivalent Lateral Force Method


In Equivalent Lateral Force Method, the Base Shear is determined using code based procedures. The calculated Base Shear is then distributed through all the stories in relation to the storey weight and height from the base.

Use of Equivalent Lateral Force Method should be limited for simple regular buildings, without elevation regularity, and the fundamental periods in the two main directions are less than 2 seconds.

Equivalent Lateral Force Method can also be used as a reference for verifying/checking dynamic seismic analysis results such as RSA.

To define a static seismic load pattern, click on to **Define>Load Patterns...** Select "Seismic" as the type, and select "EUROCODE8 2004" in Auto Lateral Load.

Modify the static seismic load pattern accordingly:

Seismic Load Pattern - Eurocode8 2004			×
Direction and Eccentricity	Parameters	a g /	g = (a _{gR} x Imp. Facto
X Dir X Dir + Eccentricity	Country	Singapore	~
X Dir - Eccentricity	Ground Acceleration, ag/g	0.017839	
Ecc. Ratio (All Diaph.) 0.05	Spectrum Type	1	\sim
Overwrite Eccentricities Overwrite	Ground Type		~
	Soil Factor, S	2.5	
Time Period 5% eccentricity	Spectrum Period, Tb	0.9	sec
O Approximate Ct (m) =	Spectrum Period, Tc	1.6	sec
Program Calculated	Spectrum Period, Td	4.6	sec
O User Defined T = sec	Lower Bound Factor, Beta	0.2	
Story Range	Behavior Factor, q	1.5	
Top Story Story6 ~	Correction Factor, Lambda		
Bottom Story Story1 ~		9	 Depends on Ductility Class

oad Direction and Diaphragm Eccentricity	Parameters	
Global X Direction	Country Other	~
Global Y Direction	Ground Acceleration, ag/g	0.017839
Ecc. Ratio (All Diaph.) 0.05	Spectrum Type	1 ~
	Ground Type	D ~
Override Diaph. Eccen. Override	Soil Factor, S	2.5
L	Spectrum Period, Tb	0.9
ime Period	Spectrum Period, Tc	1.6
O Approximate Ct (m) =	Spectrum Period, Td	4.6
Program Calc	Lower Bound Factor, Beta	0.2
O User Defined T =	Behavior Factor, q	1.5
ateral Load Elevation Range	Correction Factor, Lambda	1.
O Program Calculated		
User Specified Reset Defaults		-
Max Z 8.7	ОК	

An important thing to note is that the value required for Ground Acceleration is in terms of **ag/g**, where $\mathbf{a}_{g} = a_{gR} \times \text{Importance Factor}$, and **g** refers to gravitational acceleration (9.81 m/s²).

Three options are provided for the building period to be used in calculating the automatic seismic loads as per EC8. These are Approximate, Program Calculated, and User Defined.

In using **Approximate** period, the program will calculate the fundamental period based on EN1998-1 Eq. 4.6.

If **Program Calculated** is chosen, the program start with the period of the mode calculated to have the largest participation factor in the direction that loads are being calculated (X or Y).

For the input the Story/Elevation range data, specify a top story/maximum elevation and a bottom story/minimum elevation. This specifies the elevation range over which the automatic static lateral loads are calculated. In most instances, the top elevation would be specified as the uppermost level in the structure, typically the roof in a building.

The bottom elevation typically would be the base level, but this may not always be the case. For example, if a building has several rigid below-grade levels and it is assumed that the seismic loads are transferred to the ground at ground level, it would be practical to specify the bottom elevation to be above the base level.

Note that no seismic loads are calculated for the bottom story/minimum elevation and below.

Specifying 0.05 (5%) in the eccentricity ratio input will satisfy EC8 requirements regarding minimum accidental torsion effect that need to be considered. The eccentricity options have meaning only if the model has diaphragms—the programs ignore eccentricities where diaphragms are not present.

VI. Defining Response Spectrum Function and Load Case

RSA method is suitable to be used for Irregular buildings. In this dynamic analysis, building irregularity and dynamic effects are both accounted.

Generally, RSA method is used to find the maximum/peak response of the structure to a certain dynamic loading wherein the "Sign" (direction) is not relevant.

In performing RSA, response spectrum function will be defined as per code.

Click on **Define>Functions>Response Spectrum...** Select EUROCODE8-2004 under Function Type to Add, and click Modify/Show Spectrum...

esponse Spectra	Choose Function Type to Add
EC8-SG	EUROCODE8-2004 V
	Click to:
	Add New Function
	Modify/Show Spectrum
	Delete Spectrum
	OK Cancel

Define the response spectrum function using similar values as that of in static seismic load pattern definition.

			Function Damping Ratio	
Function Name	EC8-S	G	Damping Ratio	0.05
Input val rameters Country Direction Ground Acceleration, ag/g Spectrum Type Ground Type Soil Factor, S Acceleration Ratio, Avg/Ag Spectrum Period, To Spectrum Period, To Spectrum Period, Td Lower Bound Factor, Beta	ue is also ag/g	Function Graph E-3 84.0 72.0 48.0 24.0 24.0 12.0 0.0 1.2 2.4 3 Function Points Period Accelerat	3.8 4.8 6.0 7.2 8.4	i i i 9.5 10.8 12.0
Behavior Factor, g Convert to User De	1.5	0 0 0.297 0.3 0.0446 0.6 0.0555 0.9 0.0743 2.1 0.0566 2.6 0.0457 3.1 0.0334 3.6 ♥ 0.033 4.1 ♥ 0.029	 Uinear X - Log Y Log X - Linear Y Log X - Log Y 	

Next, define an RSA load case, click on **Define>Load Case...**

Load Case Name		RSA		De	
Load Case Type		Response Spectru	m ~	1000000	sign
Exclude Objects in th	- C		m ~	No	ites
101.015	is Group	Not Applicable			
Mass Source		Previous (MsSrc1)		F	The units for the Scale Factor column depend
oads Applied					on the Load Type.
Load Type	Load Name	Function	Scale Factor		Loadpattern: Unitless Acceleration, translationa(mm/sec ²)
Acceleration	U1	EC8-SG	9806.65	4	Acceleration, rotational: radised
Acceleration	U2	EC8-SG	9806.65		
Other Parameters Modal Load Case		Modal			efault unit for
Modal Load Case	lethod	~		D	efault unit for
Modal Load Case Modal Combination M		CQC	~	Diad	efault unit for cceleration input is
Modal Load Case Modal Combination M	lethod id Response	Rigid Frequency, f1		Diad	efault unit for
Modal Load Case Modal Combination M		Rigid Frequency, f1 Rigid Frequency, f2		Diad	efault unit for cceleration input is
Modal Load Case Modal Combination M	id Response	Rigid Frequency, f1		Di ac m	efault unit for cceleration input is im/sec2
Modal Load Case Modal Combination M Include Rig Earthquake Du	id Response	Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Di ac m	efault unit for cceleration input is im/sec2 Choose either:
Modal Combination M	id Response iration, td on Type	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Di ac m	efault unit for cceleration input is im/sec2 Choose either: SRSS, or
Modal Load Case Modal Combination M Include Rig Earthquake Du Directional Combinatio	id Response	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS			efault unit for cceleration input is im/sec2 Choose either: SRSS, or Absolute for 100% + 30% R
Modal Load Case Modal Combination M Include Rig Earthquake Du Directional Combinatio	id Response iration, td on Type	CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS			efault unit for cceleration input is im/sec2 Choose either: SRSS, or